Spaces:
Runtime error
Runtime error
File size: 4,568 Bytes
edc5524 5d8c50a edc5524 5d8c50a 36ed57b d38c9a3 5d8c50a 36ed57b d38c9a3 5d8c50a edc5524 f15598c edc5524 5d8c50a ec79cc9 edc5524 5d8c50a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from typing import List
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
def calculate_precision(
predictions: List[List[str]],
reference: List[List[str]]
) -> float:
precision = 0
count = 0
for i, d in enumerate(reference):
if len(d) == 0:
continue
predicted_titles = predictions[i]
hits = 0
for title in predicted_titles:
if title in d:
hits += 1
if len(predicted_titles) != 0:
precision += hits / len(predicted_titles)
count += 1
return precision / count
def calculate_recall(
predictions: List[List[str]],
reference: List[List[str]]
) -> float:
recall = 0
count = 0
for i, d in enumerate(reference):
if len(d) == 0:
continue
predicted_titles = predictions[i]
hits = 0
for title in predicted_titles:
if title in d:
hits += 1
recall += hits / len(d)
count += 1
return recall / count
beta = 0.7
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class DocRetrieveMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
"predictions": datasets.Sequence(datasets.Value("string")),
"references": datasets.Sequence(datasets.Value("string")),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, predictions, references):
recall = calculate_recall(predictions, references)
precision = calculate_precision(predictions, references)
f_score = (1 + beta*beta) * precision * recall / (beta * beta*precision + recall)
return {
"f1": float(
f_score
)
}
|