# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" from typing import List import evaluate import datasets # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ def calculate_precision( predictions: List[List[str]], reference: List[List[str]] ) -> float: precision = 0 count = 0 for i, d in enumerate(reference): if len(d) == 0: continue predicted_titles = predictions[i] hits = 0 for title in predicted_titles: if title in d: hits += 1 if len(predicted_titles) != 0: precision += hits / len(predicted_titles) count += 1 return precision / count def calculate_recall( predictions: List[List[str]], reference: List[List[str]] ) -> float: recall = 0 count = 0 for i, d in enumerate(reference): if len(d) == 0: continue predicted_titles = predictions[i] hits = 0 for title in predicted_titles: if title in d: hits += 1 recall += hits / len(d) count += 1 return recall / count beta = 0.7 @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class DocRetrieveMetrics(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ "predictions": datasets.Sequence(datasets.Value("string")), "references": datasets.Sequence(datasets.Value("string")), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _compute(self, predictions, references): recall = calculate_recall(predictions, references) precision = calculate_precision(predictions, references) f_score = (1 + beta*beta) * precision * recall / (beta * beta*precision + recall) return { "f1": float( f_score ) }