Spaces:
Sleeping
Sleeping
Commit
·
57025a9
1
Parent(s):
dc2c84a
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
# Author: Brian King
|
2 |
-
# For: BrandMuscle, Copyright 2023 All Rights Reserved
|
3 |
-
|
4 |
import streamlit as st
|
5 |
import os
|
6 |
from llama_index import (
|
@@ -12,7 +9,7 @@ from llama_index.llms import OpenAI
|
|
12 |
import openai
|
13 |
|
14 |
# Define Streamlit layout and interaction
|
15 |
-
st.title("
|
16 |
|
17 |
# Upload PDF
|
18 |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
@@ -51,12 +48,12 @@ if 'retrieved_text' not in st.session_state:
|
|
51 |
if st.button("Retrieve"):
|
52 |
with st.spinner('Retrieving text...'):
|
53 |
# Use VectorStoreIndex to search
|
54 |
-
query_engine = index.as_query_engine(similarity_top_k=3)
|
55 |
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
56 |
-
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}")
|
57 |
|
58 |
# Select content type
|
59 |
-
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"])
|
60 |
|
61 |
# Generate text based on retrieved text and selected content type
|
62 |
if st.button("Generate") and content_type:
|
@@ -65,7 +62,7 @@ if st.button("Generate") and content_type:
|
|
65 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
66 |
try:
|
67 |
if content_type == "Blog":
|
68 |
-
prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}"
|
69 |
elif content_type == "Tweet":
|
70 |
prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}"
|
71 |
response = openai.ChatCompletion.create(
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from llama_index import (
|
|
|
9 |
import openai
|
10 |
|
11 |
# Define Streamlit layout and interaction
|
12 |
+
st.title("Grounded Generations")
|
13 |
|
14 |
# Upload PDF
|
15 |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
|
|
48 |
if st.button("Retrieve"):
|
49 |
with st.spinner('Retrieving text...'):
|
50 |
# Use VectorStoreIndex to search
|
51 |
+
query_engine = index.as_query_engine(similarity_top_k=3)
|
52 |
st.session_state['retrieved_text'] = query_engine.query(user_query)
|
53 |
+
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}") # store the retrieved text as a streamlit state variable
|
54 |
|
55 |
# Select content type
|
56 |
+
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"]) # make some default nonsense
|
57 |
|
58 |
# Generate text based on retrieved text and selected content type
|
59 |
if st.button("Generate") and content_type:
|
|
|
62 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
63 |
try:
|
64 |
if content_type == "Blog":
|
65 |
+
prompt = f"Write a blog about 500 words in length using the {st.session_state['retrieved_text']}" #uses content from the stored state
|
66 |
elif content_type == "Tweet":
|
67 |
prompt = f"Compose a tweet using the {st.session_state['retrieved_text']}"
|
68 |
response = openai.ChatCompletion.create(
|