File size: 1,726 Bytes
fc741fb
 
 
0e1164c
 
fc741fb
 
 
 
 
 
 
 
0e1164c
fc741fb
0e1164c
 
fc741fb
 
 
 
 
 
 
 
0e1164c
 
 
 
fc741fb
 
 
 
 
 
 
 
 
0e1164c
fc741fb
 
 
 
 
 
 
 
0e1164c
fc741fb
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
import streamlit as st

from constants import DEFAULT_DR, DEFAULT_META
from utils import fetch_resource, plot_feature, plot_sc_embedding, ui_model_selection

st.set_page_config(layout="wide")
st.markdown("""
    # Gene expression
    
    Levels of gene activity along differentiation.
""")

ui_model_selection()

if st.session_state["SPECIE"] and st.session_state["VERSION"]:
    adata = fetch_resource(st.session_state["SPECIE"], st.session_state["VERSION"])

    sl_dr = st.sidebar.selectbox(
        "**Dimension reduction**",
        adata.obsm_keys(),
        index=adata.obsm_keys().index(DEFAULT_DR),
        placeholder="Select method ...",
    )

    st.sidebar.markdown(
        f"Visualization done on `{adata.uns['neighbors']['params']['use_rep']}` space."
    )

    sl_metadata = st.sidebar.selectbox(
        "**Metadata**",
        adata.obs.columns,
        index=adata.obs.columns.get_loc(DEFAULT_META),
        placeholder="Select column ...",
    )

    sl_feature = st.sidebar.selectbox(
        "**Gene**",
        sorted(adata.raw.var_names),
        index=0,
        placeholder="Select gene ...",
    )

    is_imputed = sl_feature in adata.var_names
    sl_denoised = st.sidebar.checkbox(
        "Use denoised expression?",
        help="Denoised expression is sampled from the decoder.",
        disabled=(not is_imputed),
    )

    col1, col2 = st.columns(2)
    plot_sc_embedding(adata, group_by=sl_metadata, reduction_key=sl_dr, ax=col1)
    plot_sc_embedding(
        adata, feature=sl_feature, reduction_key=sl_dr, layer=sl_denoised, ax=col2
    )

    st.markdown("## Raw gene expression")
    plot_feature(adata, feature=sl_feature, group_by=sl_metadata, kind="box")