File size: 2,371 Bytes
fc741fb
 
0e1164c
fc741fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1164c
 
 
 
 
 
 
 
 
 
 
 
fc741fb
0e1164c
fc741fb
 
0e1164c
cdb5bcf
 
 
 
 
 
0e1164c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc741fb
0e1164c
 
 
 
fc741fb
0e1164c
 
fc741fb
0e1164c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python
import streamlit as st
from utils import fetch_resource, ui_model_selection

st.set_page_config(layout="wide")

st.markdown("""
    # SHAP features
    
    Predicted features (genes) used by the scANVI classifier to determine a cell type. The features
    have been determined using [SHAP](https://shap.readthedocs.io/en/latest/).
    
    Each metric for a feature is determined from 10 random boostraps with replacement.
            
    - weight_mean: $\mu$ of SHAP value
    - weight_std: $\sigma$ of SHAP value
    - weight_ci_upper: $\mu$ + $\sigma$
    - weight_ci_lower: $\mu$ - $\sigma$
    - logfoldchanges: Log2fold change from differentiation expression analysis
    - pvals_adj: Adjusted p-value from differentiation expression analysis
    - scores: Estimated score from differentiation expression analysis
    """)

ui_model_selection()

filter_condition = []

if st.session_state["SPECIE"] and st.session_state["VERSION"]:
    adata = fetch_resource(st.session_state["SPECIE"], st.session_state["VERSION"])

    explainer = st.sidebar.selectbox(
        "**Explainer**",
        adata.uns["explainer"].keys(),
        index=None,
        placeholder="Select explainer ...",
    )

    if explainer:
        shap_values = (
            adata.uns["explainer"][explainer]
            .pop("shap_values")
            .reset_index()
            .rename(columns={"index": "feature"})
        )
        params = [f"{k}:\t{v}" for k, v in adata.uns["explainer"][explainer].items()]

        st.sidebar.markdown("**Parameters**")
        for k, v in adata.uns["explainer"][explainer].items():
            st.sidebar.markdown(f"{k}:\t{v}")

        celltype = st.sidebar.selectbox(
            "**Cell type**",
            adata.obs.ct.cat.categories,
            index=None,
            placeholder="Select cell type ...",
        )

        features = st.sidebar.multiselect(
            "**Genes**",
            sorted(shap_values.feature.unique()),
            placeholder="Select genes ...",
        )

        if celltype:
            filter_condition.append("ct == @celltype")
        if features:
            filter_condition.append("feature in @features")

        if filter_condition:
            shap_values = shap_values.query(" & ".join(filter_condition))

        st.dataframe(shap_values, use_container_width=True, height=650)