File size: 2,371 Bytes
fc741fb 0e1164c fc741fb 0e1164c fc741fb 0e1164c fc741fb 0e1164c cdb5bcf 0e1164c fc741fb 0e1164c fc741fb 0e1164c fc741fb 0e1164c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
#!/usr/bin/env python
import streamlit as st
from utils import fetch_resource, ui_model_selection
st.set_page_config(layout="wide")
st.markdown("""
# SHAP features
Predicted features (genes) used by the scANVI classifier to determine a cell type. The features
have been determined using [SHAP](https://shap.readthedocs.io/en/latest/).
Each metric for a feature is determined from 10 random boostraps with replacement.
- weight_mean: $\mu$ of SHAP value
- weight_std: $\sigma$ of SHAP value
- weight_ci_upper: $\mu$ + $\sigma$
- weight_ci_lower: $\mu$ - $\sigma$
- logfoldchanges: Log2fold change from differentiation expression analysis
- pvals_adj: Adjusted p-value from differentiation expression analysis
- scores: Estimated score from differentiation expression analysis
""")
ui_model_selection()
filter_condition = []
if st.session_state["SPECIE"] and st.session_state["VERSION"]:
adata = fetch_resource(st.session_state["SPECIE"], st.session_state["VERSION"])
explainer = st.sidebar.selectbox(
"**Explainer**",
adata.uns["explainer"].keys(),
index=None,
placeholder="Select explainer ...",
)
if explainer:
shap_values = (
adata.uns["explainer"][explainer]
.pop("shap_values")
.reset_index()
.rename(columns={"index": "feature"})
)
params = [f"{k}:\t{v}" for k, v in adata.uns["explainer"][explainer].items()]
st.sidebar.markdown("**Parameters**")
for k, v in adata.uns["explainer"][explainer].items():
st.sidebar.markdown(f"{k}:\t{v}")
celltype = st.sidebar.selectbox(
"**Cell type**",
adata.obs.ct.cat.categories,
index=None,
placeholder="Select cell type ...",
)
features = st.sidebar.multiselect(
"**Genes**",
sorted(shap_values.feature.unique()),
placeholder="Select genes ...",
)
if celltype:
filter_condition.append("ct == @celltype")
if features:
filter_condition.append("feature in @features")
if filter_condition:
shap_values = shap_values.query(" & ".join(filter_condition))
st.dataframe(shap_values, use_container_width=True, height=650)
|