matq007's picture
feat: move from streamlit to hugging spaces
0e1164c unverified
import socket
import urllib.request
from pathlib import Path
from typing import Literal
import anndata
import pandas as pd
import plotly.express as px
import streamlit as st
from constants import MODELS
def ui_model_selection():
# shared state variables between pages
if "SPECIE" not in st.session_state:
st.session_state["SPECIE"] = None
if "VERSION" not in st.session_state:
st.session_state["VERSION"] = None
specie = st.sidebar.selectbox(
"**Species**",
MODELS.keys(),
index=list(MODELS.keys()).index(st.session_state["SPECIE"]) if st.session_state["SPECIE"] else None,
placeholder="Supported species",
)
if specie:
version = st.sidebar.selectbox(
"**Version**",
MODELS[specie],
index=MODELS[specie].index(st.session_state["VERSION"]) if st.session_state["VERSION"] else None,
placeholder="Version",
)
st.sidebar.divider()
if specie and version:
st.session_state["SPECIE"] = specie
st.session_state["VERSION"] = version
@st.cache_data
def _fetch_resource(url: str, filename: str) -> str:
"""Helper function for downloading datasets
Parameters
----------
url : str
Zenodo url link
Returns
-------
str
Path where the file was downloaded to, default /tmp
"""
destination = Path(f"/tmp/{filename}")
if not filename:
raise ValueError("Filename not specified!")
if not destination.exists():
try:
urllib.request.urlretrieve(url, destination)
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError(f"could not download {url} due to {err}")
return destination.as_posix()
def fetch_resource(specie: str, version: str) -> anndata.AnnData:
"""Load H5AD dataset from Hugging Face (https://huggingface.co/brickmanlab)
Parameters
----------
specie : str
Specie
version : str
Model version
Returns
-------
anndata.AnnData
Annotated dataset
Raises
------
ValueError
Specie and Version have to exist
"""
if specie not in MODELS and version not in MODELS[specie]:
raise ValueError(f"Provided {specie} and {version} are not present on Hugging Face models!")
url: str = f"https://huggingface.co/brickmanlab/{specie.lower()}-scanvi/resolve/{version}/adata.h5ad"
return anndata.read_h5ad(_fetch_resource(url, filename=f"{specie.lower()}_v{version}.h5ad"))
def get_embedding(adata: anndata.AnnData, key: str) -> pd.DataFrame:
"""
Helper function which retrieves embedding coordinates for each cell.
Parameters
----------
adata : anndata.AnnData
scrna-seq dataset
key : str
Dimension reduction key, usually starts with X_
Returns
-------
pd.DataFrame
Embedding coordinates
Raises
------
ValueError
Fail if reduction key doesn't exist
"""
if key not in adata.obsm.keys():
raise ValueError(f"Reduction key: {key} not available")
dimension_names = f"{key[2:].upper()}_1", f"{key[2:].upper()}_2"
return pd.DataFrame(adata.obsm[key][:, :2], columns=dimension_names)
def plot_sc_embedding(
adata: anndata.AnnData,
reduction_key: str,
group_by: str = None,
feature: str = None,
layer: str = None,
ax = None,
):
"""
Plot single-cell dataset
Parameters
----------
adata : anndata.AnnData
scrna-seq dataset
reduction_key : str
Reduced space key
group_by : str
Key used to color cells
features: str
Gene
ax : _type_
Axes
"""
embeddings = get_embedding(adata, reduction_key)
if group_by:
embeddings[group_by] = adata.obs[group_by].values
embeddings = embeddings.sort_values(by=group_by)
# color_uns_key = f"{group_by}_colors"
kwargs = {"color": embeddings[group_by].values.tolist()}
if adata.obs[group_by].dtype == "category":
...
else:
kwargs["color_continuous_scale"] = px.colors.sequential.Viridis
if feature:
X = (
adata[:, feature].layers["scVI_normalized"].toarray()
if layer
else adata.raw[:, feature].X.toarray()
)
embeddings[feature] = X.ravel()
kwargs = {
"color": embeddings[feature].values.tolist(),
# "title": feature,
"color_continuous_scale": px.colors.sequential.Viridis,
}
ax_ = ax if ax else st
ax_.plotly_chart(
px.scatter(
data_frame=embeddings,
x=embeddings.columns[0],
y=embeddings.columns[1],
**kwargs,
),
use_container_width=True,
# .update_xaxes(showgrid=False)
# .update_yaxes(showgrid=False, zeroline=False)
)
def plot_feature(
adata: anndata.AnnData,
feature: str,
group_by: str,
kind: Literal["box"] = "box",
ax = None
):
"""Plot feature expression
Parameters
----------
adata : anndata.AnnData
Dataset
feature : str
Gene name
group_by : str
Metadata column
kind : str
Type of plot
ax : _type_, optional
Axis, by default None
"""
df = pd.DataFrame(adata.raw[:, feature].X.toarray(), columns=[feature])
df[group_by] = adata.obs[group_by].values
df = df.sort_values(by=group_by)
g = None
if kind == "box":
g = px.box(df, x=group_by, y=feature, color=group_by)
else:
raise ValueError(f"Provided kind: {kind} not supported")
ax_ = ax if ax else st
ax_.plotly_chart(g, use_container_width=True)
def get_degs(adata: anndata.AnnData, key: str) -> pd.DataFrame:
"""Format DEGs to datagrame.
Code taken from https://github.com/scverse/scanpy/blob/1.10.4/src/scanpy/get/get.py#L27-L111
Parameters
----------
adata : anndata.AnnData
Annotated dataframe
key : str
Key used to store the degs
Returns
-------
pd.DataFrame
Dataframe of differentially expressed genes
"""
group = list(adata.uns[key]["names"].dtype.names)
colnames = ["names", "scores", "logfoldchanges", "pvals", "pvals_adj"]
d = [pd.DataFrame(adata.uns[key][c])[group] for c in colnames]
d = pd.concat(d, axis=1, names=[None, "group"], keys=colnames)
d = d.stack(level=1).reset_index()
d["group"] = pd.Categorical(d["group"], categories=group)
d = d.sort_values(["group", "level_0"]).drop(columns="level_0")
return d