#!/usr/bin/env python import streamlit as st from constants import MODELS st.set_page_config(layout="wide") st.markdown( """ # Download & Credits ## 1. Preprocessing pipelines - Downloading datasets: [nf-core/fetchngs (revision 1.10.0)](https://github.com/nf-core/fetchngs) - Aligning datasets: [brickmanlab/scrnaseq (revision: feature/smartseq)](https://github.com/brickmanlab/scrnaseq) - **Ensembl Genomes (models <= v1.1)** - Mouse: GRCm38 v102 - Human: GRCh38 v110 ## 2. Codebase - Data analysis: [brickmanlab/proks-salehin-et-al](https://github.com/brickmanlab/proks-salehin-et-al) - Web portal on HF: [brickmanlab/hf-preimplantation-portal](https://huggingface.co/spaces/brickmanlab/hf-preimplantation-portal/tree/main) - Web portal (deprecated): [brickmanlab/preimplantation-portal](https://github.com/brickmanlab/preimplantation-portal) ## 3. Raw and normalized counts Raw counts are stored in `layers['counts']` and normalized counts are stored in `.X`. - **models <= v1.1** - [mouse](https://zenodo.org/records/13749348/files/01_mouse_reprocessed.h5ad) - [human](https://zenodo.org/records/13749348/files/32_human_adata.h5ad) ## 4. scVI/scANVI models Trained models with parameters were uploaded to [Hugging Face](https://huggingface.co/brickmanlab/preimplantation-models). """ ) text = "" for specie in MODELS: text += f"- **{specie}**: " for version in MODELS[specie]: url = ( f"https://huggingface.co/brickmanlab/{specie.lower()}-scanvi/tree/{version}" ) text += f"[{version}]({url}), " text = text[:-2] + "\n" st.markdown(text) st.markdown( """ ## 5. Credit > [!TIP] > Proks, M., Salehin, N. & Brickman, J.M. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 22, 207–216 (2025). https://doi.org/10.1038/s41592-024-02511-3 """ )