Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ import gradio as gr
|
|
17 |
from pinecone import Pinecone, ServerlessSpec
|
18 |
import openai
|
19 |
|
20 |
-
# Load environment variables
|
21 |
load_dotenv()
|
22 |
|
23 |
# Initialize OpenAI and Pinecone credentials
|
@@ -51,10 +50,8 @@ embeddings = VoyageAIEmbeddings(
|
|
51 |
|
52 |
def search_documents(query):
|
53 |
try:
|
54 |
-
# Initialize the vector store and retriever
|
55 |
vector_store = PineconeVectorStore(index_name=pinecone_index_name, embedding=embeddings)
|
56 |
|
57 |
-
# Use maxMarginalRelevanceSearch to improve diversity in results
|
58 |
results = vector_store.max_marginal_relevance_search(query, k=7, fetch_k=20) # Adjust fetch_k for more diverse results
|
59 |
|
60 |
# Filter results to ensure uniqueness based on metadata.id
|
@@ -105,7 +102,6 @@ def generate_output(context, query):
|
|
105 |
def complete_workflow(query):
|
106 |
try:
|
107 |
context_data, combined_context = search_documents(query)
|
108 |
-
#natural_language_output = generate_output(combined_context, query)
|
109 |
|
110 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data}) # Get only file names
|
111 |
|
@@ -131,18 +127,6 @@ def complete_workflow(query):
|
|
131 |
return {"results": []}, f"Error in workflow: {str(e)}"
|
132 |
|
133 |
|
134 |
-
def delete_index():
|
135 |
-
try:
|
136 |
-
pinecone_index_name = "rag-proto011"
|
137 |
-
if pinecone_index_name in pc.list_indexes().names():
|
138 |
-
pc.delete_index(name=pinecone_index_name)
|
139 |
-
return "Pinecone Index Deleted"
|
140 |
-
else:
|
141 |
-
return "Pinecone Index Had Already Been Deleted"
|
142 |
-
except Exception as e:
|
143 |
-
return f"Error deleting Pinecone index: {str(e)}"
|
144 |
-
|
145 |
-
|
146 |
def gradio_app():
|
147 |
with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
|
148 |
gr.Markdown("### Intelligent Document Search Prototype-v0.1.2 ")
|
|
|
17 |
from pinecone import Pinecone, ServerlessSpec
|
18 |
import openai
|
19 |
|
|
|
20 |
load_dotenv()
|
21 |
|
22 |
# Initialize OpenAI and Pinecone credentials
|
|
|
50 |
|
51 |
def search_documents(query):
|
52 |
try:
|
|
|
53 |
vector_store = PineconeVectorStore(index_name=pinecone_index_name, embedding=embeddings)
|
54 |
|
|
|
55 |
results = vector_store.max_marginal_relevance_search(query, k=7, fetch_k=20) # Adjust fetch_k for more diverse results
|
56 |
|
57 |
# Filter results to ensure uniqueness based on metadata.id
|
|
|
102 |
def complete_workflow(query):
|
103 |
try:
|
104 |
context_data, combined_context = search_documents(query)
|
|
|
105 |
|
106 |
document_titles = list({os.path.basename(doc["title"]) for doc in context_data}) # Get only file names
|
107 |
|
|
|
127 |
return {"results": []}, f"Error in workflow: {str(e)}"
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def gradio_app():
|
131 |
with gr.Blocks(css=".result-output {width: 150%; font-size: 16px; padding: 10px;}") as app:
|
132 |
gr.Markdown("### Intelligent Document Search Prototype-v0.1.2 ")
|