File size: 18,662 Bytes
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Copyright (c) Facebook, Inc. and its affiliates.
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import random
import unittest
import torch
from fvcore.common.benchmark import benchmark

from detectron2.layers.rotated_boxes import pairwise_iou_rotated
from detectron2.structures.boxes import Boxes
from detectron2.structures.rotated_boxes import RotatedBoxes, pairwise_iou
from detectron2.utils.testing import reload_script_model

logger = logging.getLogger(__name__)


class TestRotatedBoxesLayer(unittest.TestCase):
    def test_iou_0_dim_cpu(self):
        boxes1 = torch.rand(0, 5, dtype=torch.float32)
        boxes2 = torch.rand(10, 5, dtype=torch.float32)
        expected_ious = torch.zeros(0, 10, dtype=torch.float32)
        ious = pairwise_iou_rotated(boxes1, boxes2)
        self.assertTrue(torch.allclose(ious, expected_ious))

        boxes1 = torch.rand(10, 5, dtype=torch.float32)
        boxes2 = torch.rand(0, 5, dtype=torch.float32)
        expected_ious = torch.zeros(10, 0, dtype=torch.float32)
        ious = pairwise_iou_rotated(boxes1, boxes2)
        self.assertTrue(torch.allclose(ious, expected_ious))

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_iou_0_dim_cuda(self):
        boxes1 = torch.rand(0, 5, dtype=torch.float32)
        boxes2 = torch.rand(10, 5, dtype=torch.float32)
        expected_ious = torch.zeros(0, 10, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))

        boxes1 = torch.rand(10, 5, dtype=torch.float32)
        boxes2 = torch.rand(0, 5, dtype=torch.float32)
        expected_ious = torch.zeros(10, 0, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))

    def test_iou_half_overlap_cpu(self):
        boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
        boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32)
        expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
        ious = pairwise_iou_rotated(boxes1, boxes2)
        self.assertTrue(torch.allclose(ious, expected_ious))

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_iou_half_overlap_cuda(self):
        boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
        boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32)
        expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))

    def test_iou_precision(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor([[565, 565, 10, 10.0, 0]], dtype=torch.float32, device=device)
            boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32, device=device)
            iou = 8.3 / 10.0
            expected_ious = torch.tensor([[iou]], dtype=torch.float32)
            ious = pairwise_iou_rotated(boxes1, boxes2)
            self.assertTrue(torch.allclose(ious.cpu(), expected_ious))

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_iou_too_many_boxes_cuda(self):
        s1, s2 = 5, 1289035
        boxes1 = torch.zeros(s1, 5)
        boxes2 = torch.zeros(s2, 5)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2))

    def test_iou_extreme(self):
        # Cause floating point issues in cuda kernels (#1266)
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device)
            boxes2 = torch.tensor(
                [
                    [
                        -1.117407639806935e17,
                        1.3858420478349148e18,
                        1000.0000610351562,
                        1000.0000610351562,
                        1612.0,
                    ]
                ],
                device=device,
            )
            ious = pairwise_iou_rotated(boxes1, boxes2)
            self.assertTrue(ious.min() >= 0, ious)

    def test_iou_issue_2154(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor(
                [
                    [
                        296.6620178222656,
                        458.73883056640625,
                        23.515729904174805,
                        47.677001953125,
                        0.08795166015625,
                    ]
                ],
                device=device,
            )
            boxes2 = torch.tensor(
                [[296.66201, 458.73882000000003, 23.51573, 47.67702, 0.087951]],
                device=device,
            )
            ious = pairwise_iou_rotated(boxes1, boxes2)
            expected_ious = torch.tensor([[1.0]], dtype=torch.float32)
            self.assertTrue(torch.allclose(ious.cpu(), expected_ious))

    def test_iou_issue_2167(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor(
                [
                    [
                        2563.74462890625000000000,
                        1436.79016113281250000000,
                        2174.70336914062500000000,
                        214.09500122070312500000,
                        115.11834716796875000000,
                    ]
                ],
                device=device,
            )
            boxes2 = torch.tensor(
                [
                    [
                        2563.74462890625000000000,
                        1436.79028320312500000000,
                        2174.70288085937500000000,
                        214.09495544433593750000,
                        115.11835479736328125000,
                    ]
                ],
                device=device,
            )
            ious = pairwise_iou_rotated(boxes1, boxes2)
            expected_ious = torch.tensor([[1.0]], dtype=torch.float32)
            self.assertTrue(torch.allclose(ious.cpu(), expected_ious))


class TestRotatedBoxesStructure(unittest.TestCase):
    def test_clip_area_0_degree(self):
        for _ in range(50):
            num_boxes = 100
            boxes_5d = torch.zeros(num_boxes, 5)
            boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
            boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
            boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
            boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
            # Convert from (x_ctr, y_ctr, w, h, 0) to  (x1, y1, x2, y2)
            boxes_4d = torch.zeros(num_boxes, 4)
            boxes_4d[:, 0] = boxes_5d[:, 0] - boxes_5d[:, 2] / 2.0
            boxes_4d[:, 1] = boxes_5d[:, 1] - boxes_5d[:, 3] / 2.0
            boxes_4d[:, 2] = boxes_5d[:, 0] + boxes_5d[:, 2] / 2.0
            boxes_4d[:, 3] = boxes_5d[:, 1] + boxes_5d[:, 3] / 2.0

            image_size = (500, 600)
            test_boxes_4d = Boxes(boxes_4d)
            test_boxes_5d = RotatedBoxes(boxes_5d)
            # Before clip
            areas_4d = test_boxes_4d.area()
            areas_5d = test_boxes_5d.area()
            self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5))
            # After clip
            test_boxes_4d.clip(image_size)
            test_boxes_5d.clip(image_size)
            areas_4d = test_boxes_4d.area()
            areas_5d = test_boxes_5d.area()
            self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5))

    def test_clip_area_arbitrary_angle(self):
        num_boxes = 100
        boxes_5d = torch.zeros(num_boxes, 5)
        boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
        boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
        boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
        boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
        boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800)
        clip_angle_threshold = random.uniform(0, 180)

        image_size = (500, 600)
        test_boxes_5d = RotatedBoxes(boxes_5d)
        # Before clip
        areas_before = test_boxes_5d.area()
        # After clip
        test_boxes_5d.clip(image_size, clip_angle_threshold)
        areas_diff = test_boxes_5d.area() - areas_before

        # the areas should only decrease after clipping
        self.assertTrue(torch.all(areas_diff <= 0))
        # whenever the box is clipped (thus the area shrinks),
        # the angle for the box must be within the clip_angle_threshold
        # Note that the clip function will normalize the angle range
        # to be within (-180, 180]

        self.assertTrue(
            torch.all(
                torch.abs(test_boxes_5d.tensor[:, 4][torch.where(areas_diff < 0)])
                < clip_angle_threshold
            )
        )

    def test_normalize_angles(self):
        # torch.manual_seed(0)
        for _ in range(50):
            num_boxes = 100
            boxes_5d = torch.zeros(num_boxes, 5)
            boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
            boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
            boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
            boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
            boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800)
            rotated_boxes = RotatedBoxes(boxes_5d)
            normalized_boxes = rotated_boxes.clone()
            normalized_boxes.normalize_angles()
            self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] >= -180))
            self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] < 180))
            # x, y, w, h should not change
            self.assertTrue(torch.allclose(boxes_5d[:, :4], normalized_boxes.tensor[:, :4]))
            # the cos/sin values of the angles should stay the same

            self.assertTrue(
                torch.allclose(
                    torch.cos(boxes_5d[:, 4] * math.pi / 180),
                    torch.cos(normalized_boxes.tensor[:, 4] * math.pi / 180),
                    atol=1e-5,
                )
            )

            self.assertTrue(
                torch.allclose(
                    torch.sin(boxes_5d[:, 4] * math.pi / 180),
                    torch.sin(normalized_boxes.tensor[:, 4] * math.pi / 180),
                    atol=1e-5,
                )
            )

    def test_pairwise_iou_0_degree(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor(
                [[0.5, 0.5, 1.0, 1.0, 0.0], [0.5, 0.5, 1.0, 1.0, 0.0]],
                dtype=torch.float32,
                device=device,
            )
            boxes2 = torch.tensor(
                [
                    [0.5, 0.5, 1.0, 1.0, 0.0],
                    [0.25, 0.5, 0.5, 1.0, 0.0],
                    [0.5, 0.25, 1.0, 0.5, 0.0],
                    [0.25, 0.25, 0.5, 0.5, 0.0],
                    [0.75, 0.75, 0.5, 0.5, 0.0],
                    [1.0, 1.0, 1.0, 1.0, 0.0],
                ],
                dtype=torch.float32,
                device=device,
            )
            expected_ious = torch.tensor(
                [
                    [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
                    [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
                ],
                dtype=torch.float32,
                device=device,
            )
            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_45_degrees(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor(
                [
                    [1, 1, math.sqrt(2), math.sqrt(2), 45],
                    [1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45],
                ],
                dtype=torch.float32,
                device=device,
            )
            boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32, device=device)
            expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32, device=device)
            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_orthogonal(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor([[5, 5, 10, 6, 55]], dtype=torch.float32, device=device)
            boxes2 = torch.tensor([[5, 5, 10, 6, -35]], dtype=torch.float32, device=device)
            iou = (6.0 * 6.0) / (6.0 * 6.0 + 4.0 * 6.0 + 4.0 * 6.0)
            expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_large_close_boxes(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            boxes1 = torch.tensor(
                [[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]],
                dtype=torch.float32,
                device=device,
            )
            boxes2 = torch.tensor(
                [[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]],
                dtype=torch.float32,
                device=device,
            )
            iou = 364.259155 / 364.259186
            expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_many_boxes(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            num_boxes1 = 100
            num_boxes2 = 200
            boxes1 = torch.stack(
                [
                    torch.tensor(
                        [5 + 20 * i, 5 + 20 * i, 10, 10, 0],
                        dtype=torch.float32,
                        device=device,
                    )
                    for i in range(num_boxes1)
                ]
            )
            boxes2 = torch.stack(
                [
                    torch.tensor(
                        [5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0],
                        dtype=torch.float32,
                        device=device,
                    )
                    for i in range(num_boxes2)
                ]
            )
            expected_ious = torch.zeros(num_boxes1, num_boxes2, dtype=torch.float32, device=device)
            for i in range(min(num_boxes1, num_boxes2)):
                expected_ious[i][i] = (1 + 9 * i / num_boxes2) / 10.0
            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_issue1207_simplified(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            # Simplified test case of D2-issue-1207
            boxes1 = torch.tensor([[3, 3, 8, 2, -45.0]], device=device)
            boxes2 = torch.tensor([[6, 0, 8, 2, -45.0]], device=device)
            iou = 0.0
            expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)

            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_pairwise_iou_issue1207(self):
        for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
            # The original test case in D2-issue-1207
            boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device)
            boxes2 = torch.tensor([[190.0, 127.0, 80.0, 21.0, -46.0]], device=device)

            iou = 0.0
            expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)

            ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
            self.assertTrue(torch.allclose(ious, expected_ious))

    def test_empty_cat(self):
        x = RotatedBoxes.cat([])
        self.assertTrue(x.tensor.shape, (0, 5))

    def test_scriptability(self):
        def func(x):
            boxes = RotatedBoxes(x)
            test = boxes.to(torch.device("cpu")).tensor
            return boxes.area(), test

        f = torch.jit.script(func)
        f = reload_script_model(f)
        f(torch.rand((3, 5)))

        data = torch.rand((3, 5))

        def func_cat(x: torch.Tensor):
            boxes1 = RotatedBoxes(x)
            boxes2 = RotatedBoxes(x)
            # this is not supported by torchscript for now.
            # boxes3 = RotatedBoxes.cat([boxes1, boxes2])
            boxes3 = boxes1.cat([boxes1, boxes2])
            return boxes3

        f = torch.jit.script(func_cat)
        script_box = f(data)
        self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor))


def benchmark_rotated_iou():
    num_boxes1 = 200
    num_boxes2 = 500
    boxes1 = torch.stack(
        [
            torch.tensor([5 + 20 * i, 5 + 20 * i, 10, 10, 0], dtype=torch.float32)
            for i in range(num_boxes1)
        ]
    )
    boxes2 = torch.stack(
        [
            torch.tensor(
                [5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0],
                dtype=torch.float32,
            )
            for i in range(num_boxes2)
        ]
    )

    def func(dev, n=1):
        b1 = boxes1.to(device=dev)
        b2 = boxes2.to(device=dev)

        def bench():
            for _ in range(n):
                pairwise_iou_rotated(b1, b2)
            if dev.type == "cuda":
                torch.cuda.synchronize()

        return bench

    # only run it once per timed loop, since it's slow
    args = [{"dev": torch.device("cpu"), "n": 1}]
    if torch.cuda.is_available():
        args.append({"dev": torch.device("cuda"), "n": 10})

    benchmark(func, "rotated_iou", args, warmup_iters=3)


if __name__ == "__main__":
    unittest.main()
    benchmark_rotated_iou()