Spaces:
Runtime error
Runtime error
File size: 5,017 Bytes
29a229f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright (c) Facebook, Inc. and its affiliates.
import math
import numpy as np
from unittest import TestCase
import torch
from fvcore.common.param_scheduler import (
CosineParamScheduler,
MultiStepParamScheduler,
StepWithFixedGammaParamScheduler,
)
from torch import nn
from detectron2.solver import LRMultiplier, WarmupParamScheduler, build_lr_scheduler
class TestScheduler(TestCase):
def test_warmup_multistep(self):
p = nn.Parameter(torch.zeros(0))
opt = torch.optim.SGD([p], lr=5)
multiplier = WarmupParamScheduler(
MultiStepParamScheduler(
[1, 0.1, 0.01, 0.001],
milestones=[10, 15, 20],
num_updates=30,
),
0.001,
5 / 30,
)
sched = LRMultiplier(opt, multiplier, 30)
# This is an equivalent of:
# sched = WarmupMultiStepLR(
# opt, milestones=[10, 15, 20], gamma=0.1, warmup_factor=0.001, warmup_iters=5)
p.sum().backward()
opt.step()
lrs = [0.005]
for _ in range(30):
sched.step()
lrs.append(opt.param_groups[0]["lr"])
self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001]))
self.assertTrue(np.allclose(lrs[5:10], 5.0))
self.assertTrue(np.allclose(lrs[10:15], 0.5))
self.assertTrue(np.allclose(lrs[15:20], 0.05))
self.assertTrue(np.allclose(lrs[20:], 0.005))
def test_warmup_cosine(self):
p = nn.Parameter(torch.zeros(0))
opt = torch.optim.SGD([p], lr=5)
multiplier = WarmupParamScheduler(
CosineParamScheduler(1, 0),
0.001,
5 / 30,
)
sched = LRMultiplier(opt, multiplier, 30)
p.sum().backward()
opt.step()
self.assertEqual(opt.param_groups[0]["lr"], 0.005)
lrs = [0.005]
for _ in range(30):
sched.step()
lrs.append(opt.param_groups[0]["lr"])
for idx, lr in enumerate(lrs):
expected_cosine = 2.5 * (1.0 + math.cos(math.pi * idx / 30))
if idx >= 5:
self.assertAlmostEqual(lr, expected_cosine)
else:
self.assertNotAlmostEqual(lr, expected_cosine)
def test_warmup_cosine_end_value(self):
from detectron2.config import CfgNode, get_cfg
def _test_end_value(cfg_dict):
cfg = get_cfg()
cfg.merge_from_other_cfg(CfgNode(cfg_dict))
p = nn.Parameter(torch.zeros(0))
opt = torch.optim.SGD([p], lr=cfg.SOLVER.BASE_LR)
scheduler = build_lr_scheduler(cfg, opt)
p.sum().backward()
opt.step()
self.assertEqual(
opt.param_groups[0]["lr"], cfg.SOLVER.BASE_LR * cfg.SOLVER.WARMUP_FACTOR
)
lrs = []
for _ in range(cfg.SOLVER.MAX_ITER):
scheduler.step()
lrs.append(opt.param_groups[0]["lr"])
self.assertAlmostEqual(lrs[-1], cfg.SOLVER.BASE_LR_END)
_test_end_value(
{
"SOLVER": {
"LR_SCHEDULER_NAME": "WarmupCosineLR",
"MAX_ITER": 100,
"WARMUP_ITERS": 10,
"WARMUP_FACTOR": 0.1,
"BASE_LR": 5.0,
"BASE_LR_END": 0.0,
}
}
)
_test_end_value(
{
"SOLVER": {
"LR_SCHEDULER_NAME": "WarmupCosineLR",
"MAX_ITER": 100,
"WARMUP_ITERS": 10,
"WARMUP_FACTOR": 0.1,
"BASE_LR": 5.0,
"BASE_LR_END": 0.5,
}
}
)
def test_warmup_stepwithfixedgamma(self):
p = nn.Parameter(torch.zeros(0))
opt = torch.optim.SGD([p], lr=5)
multiplier = WarmupParamScheduler(
StepWithFixedGammaParamScheduler(
base_value=1.0,
gamma=0.1,
num_decays=4,
num_updates=30,
),
0.001,
5 / 30,
rescale_interval=True,
)
sched = LRMultiplier(opt, multiplier, 30)
p.sum().backward()
opt.step()
lrs = [0.005]
for _ in range(29):
sched.step()
lrs.append(opt.param_groups[0]["lr"])
self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001]))
self.assertTrue(np.allclose(lrs[5:10], 5.0))
self.assertTrue(np.allclose(lrs[10:15], 0.5))
self.assertTrue(np.allclose(lrs[15:20], 0.05))
self.assertTrue(np.allclose(lrs[20:25], 0.005))
self.assertTrue(np.allclose(lrs[25:], 0.0005))
# Calling sche.step() after the last training iteration is done will trigger IndexError
with self.assertRaises(IndexError, msg="list index out of range"):
sched.step()
|