Spaces:
Runtime error
Runtime error
File size: 6,143 Bytes
29a229f e9e2c01 29a229f 9c71efd 29a229f 9c71efd 29a229f 025c216 29a229f e5201da 20b765e e5201da 20b765e e5201da 29a229f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import argparse
import os
from pathlib import Path
import sys
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
os.system('pip install /home/user/app/vendor/pyrender')
sys.path.append('/home/user/app/vendor/pyrender')
from hmr2.configs import get_config
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
ViTDetDataset)
from hmr2.models import HMR2
from hmr2.utils import recursive_to
from hmr2.utils.renderer import Renderer, cam_crop_to_full
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
# Setup HMR2.0 model
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
model.eval()
# Load detector
from detectron2.config import LazyConfig
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.smpl.faces)
import numpy as np
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
open_cv_image = np.array(in_pil_img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
print("EEEEE", open_cv_image.shape)
det_out = detector(open_cv_image)
det_instances = det_out['instances']
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
# Run HMR2.0 on all detected humans
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
pred_cam = out['pred_cam']
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
render_size = img_size
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
out['pred_cam_t'][n].detach().cpu().numpy(),
batch['img'][n],
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
)
verts = out['pred_vertices'][n].detach().cpu().numpy()
cam_t = pred_cam_t[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
# Render front view
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)
# Overlay image
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
# convert to PIL image
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
return out_pil_img
else:
return None
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")
with gr.Row():
input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True)
output_image = gr.Image(label="Reconstructions", type="pil", width=300, height=300, fixed_size=True)
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image])
# gr.Examples([
# ['assets/test1.png', 0.6],
# ['assets/test2.jpg', 0.6],
# ['assets/test3.jpg', 0.6],
# ['assets/test4.jpg', 0.6],
# ['assets/test5.jpg', 0.6],
# ],
# inputs=[input_image, threshold])
gr.Examples([
['assets/test1.png'],
['assets/test2.jpg'],
['assets/test3.jpg'],
['assets/test4.jpg'],
['assets/test5.jpg'],
],
inputs=[input_image, 0.6])
gr.HTML("""</ul>""")
#demo.queue()
demo.launch(debug=True)
### EOF ###
|