File size: 6,143 Bytes
29a229f
 
 
e9e2c01
29a229f
 
 
 
 
9c71efd
 
29a229f
 
 
 
 
 
 
9c71efd
 
 
 
 
 
 
 
 
 
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025c216
29a229f
 
 
e5201da
 
 
 
 
 
 
 
 
20b765e
e5201da
 
 
 
 
20b765e
e5201da
29a229f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
from pathlib import Path
import sys
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
os.system('pip install /home/user/app/vendor/pyrender')
sys.path.append('/home/user/app/vendor/pyrender')
from hmr2.configs import get_config
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
                                          ViTDetDataset)
from hmr2.models import HMR2
from hmr2.utils import recursive_to
from hmr2.utils.renderer import Renderer, cam_crop_to_full

os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"

try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')


# Setup HMR2.0 model
LIGHT_BLUE=(0.65098039,  0.74117647,  0.85882353)
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
model.eval()


# Load detector
from detectron2.config import LazyConfig

from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy

detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
    detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)

# Setup the renderer
renderer = Renderer(model_cfg, faces=model.smpl.faces)


import numpy as np


def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):

    open_cv_image = np.array(in_pil_img)
    # Convert RGB to BGR
    open_cv_image = open_cv_image[:, :, ::-1].copy()
    print("EEEEE", open_cv_image.shape)
    det_out = detector(open_cv_image)
    det_instances = det_out['instances']
    valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
    boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()

    # Run HMR2.0 on all detected humans
    dataset = ViTDetDataset(model_cfg, open_cv_image, boxes)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)

    all_verts = []
    all_cam_t = []

    for batch in dataloader:
        batch = recursive_to(batch, device)
        with torch.no_grad():
            out = model(batch)

        pred_cam = out['pred_cam']
        box_center = batch["box_center"].float()
        box_size = batch["box_size"].float()
        img_size = batch["img_size"].float()
        render_size = img_size
        pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()

        # Render the result
        batch_size = batch['img'].shape[0]
        for n in range(batch_size):
            # Get filename from path img_path
            # img_fn, _ = os.path.splitext(os.path.basename(img_path))
            person_id = int(batch['personid'][n])
            white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
            input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
            input_patch = input_patch.permute(1,2,0).numpy()

            regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
                                    out['pred_cam_t'][n].detach().cpu().numpy(),
                                    batch['img'][n],
                                    mesh_base_color=LIGHT_BLUE,
                                    scene_bg_color=(1, 1, 1),
                                    )


            verts = out['pred_vertices'][n].detach().cpu().numpy()
            cam_t = pred_cam_t[n]

            all_verts.append(verts)
            all_cam_t.append(cam_t)


    # Render front view
    if len(all_verts) > 0:
        misc_args = dict(
            mesh_base_color=LIGHT_BLUE,
            scene_bg_color=(1, 1, 1),
        )
        cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)

        # Overlay image
        input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
        input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
        input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]

        # convert to PIL image
        out_pil_img =  Image.fromarray((input_img_overlay*255).astype(np.uint8))

        return out_pil_img
    else:
        return None


with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:

    gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")

    with gr.Row():
        input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True)
        output_image = gr.Image(label="Reconstructions", type="pil", width=300, height=300, fixed_size=True)

    gr.HTML("""<br/>""")

    with gr.Row():
        threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
        send_btn = gr.Button("Infer")
        send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image])

    # gr.Examples([
    #     ['assets/test1.png', 0.6], 
    #     ['assets/test2.jpg', 0.6], 
    #     ['assets/test3.jpg', 0.6], 
    #     ['assets/test4.jpg', 0.6], 
    #     ['assets/test5.jpg', 0.6], 
    #     ], 
    #     inputs=[input_image, threshold])

    gr.Examples([
        ['assets/test1.png'], 
        ['assets/test2.jpg'], 
        ['assets/test3.jpg'], 
        ['assets/test4.jpg'], 
        ['assets/test5.jpg'], 
        ], 
        inputs=[input_image, 0.6])

    gr.HTML("""</ul>""")



#demo.queue()
demo.launch(debug=True)




### EOF ###