brjathu
Adding HF files
29a229f
raw
history blame
2.77 kB
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
from detectron2.config import CfgNode as CN
from detectron2.projects.deeplab import add_deeplab_config
def add_panoptic_deeplab_config(cfg):
"""
Add config for Panoptic-DeepLab.
"""
# Reuse DeepLab config.
add_deeplab_config(cfg)
# Target generation parameters.
cfg.INPUT.GAUSSIAN_SIGMA = 10
cfg.INPUT.IGNORE_STUFF_IN_OFFSET = True
cfg.INPUT.SMALL_INSTANCE_AREA = 4096
cfg.INPUT.SMALL_INSTANCE_WEIGHT = 3
cfg.INPUT.IGNORE_CROWD_IN_SEMANTIC = False
# Optimizer type.
cfg.SOLVER.OPTIMIZER = "ADAM"
# Panoptic-DeepLab semantic segmentation head.
# We add an extra convolution before predictor.
cfg.MODEL.SEM_SEG_HEAD.HEAD_CHANNELS = 256
cfg.MODEL.SEM_SEG_HEAD.LOSS_TOP_K = 0.2
# Panoptic-DeepLab instance segmentation head.
cfg.MODEL.INS_EMBED_HEAD = CN()
cfg.MODEL.INS_EMBED_HEAD.NAME = "PanopticDeepLabInsEmbedHead"
cfg.MODEL.INS_EMBED_HEAD.IN_FEATURES = ["res2", "res3", "res5"]
cfg.MODEL.INS_EMBED_HEAD.PROJECT_FEATURES = ["res2", "res3"]
cfg.MODEL.INS_EMBED_HEAD.PROJECT_CHANNELS = [32, 64]
cfg.MODEL.INS_EMBED_HEAD.ASPP_CHANNELS = 256
cfg.MODEL.INS_EMBED_HEAD.ASPP_DILATIONS = [6, 12, 18]
cfg.MODEL.INS_EMBED_HEAD.ASPP_DROPOUT = 0.1
# We add an extra convolution before predictor.
cfg.MODEL.INS_EMBED_HEAD.HEAD_CHANNELS = 32
cfg.MODEL.INS_EMBED_HEAD.CONVS_DIM = 128
cfg.MODEL.INS_EMBED_HEAD.COMMON_STRIDE = 4
cfg.MODEL.INS_EMBED_HEAD.NORM = "SyncBN"
cfg.MODEL.INS_EMBED_HEAD.CENTER_LOSS_WEIGHT = 200.0
cfg.MODEL.INS_EMBED_HEAD.OFFSET_LOSS_WEIGHT = 0.01
# Panoptic-DeepLab post-processing setting.
cfg.MODEL.PANOPTIC_DEEPLAB = CN()
# Stuff area limit, ignore stuff region below this number.
cfg.MODEL.PANOPTIC_DEEPLAB.STUFF_AREA = 2048
cfg.MODEL.PANOPTIC_DEEPLAB.CENTER_THRESHOLD = 0.1
cfg.MODEL.PANOPTIC_DEEPLAB.NMS_KERNEL = 7
cfg.MODEL.PANOPTIC_DEEPLAB.TOP_K_INSTANCE = 200
# If set to False, Panoptic-DeepLab will not evaluate instance segmentation.
cfg.MODEL.PANOPTIC_DEEPLAB.PREDICT_INSTANCES = True
cfg.MODEL.PANOPTIC_DEEPLAB.USE_DEPTHWISE_SEPARABLE_CONV = False
# This is the padding parameter for images with various sizes. ASPP layers
# requires input images to be divisible by the average pooling size and we
# can use `MODEL.PANOPTIC_DEEPLAB.SIZE_DIVISIBILITY` to pad all images to
# a fixed resolution (e.g. 640x640 for COCO) to avoid having a image size
# that is not divisible by ASPP average pooling size.
cfg.MODEL.PANOPTIC_DEEPLAB.SIZE_DIVISIBILITY = -1
# Only evaluates network speed (ignores post-processing).
cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED = False