Spaces:
Sleeping
Sleeping
File size: 12,149 Bytes
1c7cefc 2aa963e 1c7cefc 2aa963e 1c7cefc 2aa963e 1c7cefc 2aa963e 1c7cefc 2aa963e 1c7cefc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import threading
from flask import Flask, render_template, request, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db, download_from_hf_hub, upload_to_hf_hub
import logging
import time
from datetime import datetime
app = Flask(__name__)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global flag to track background loading
loading_complete = False
last_update_time = time.time()
def load_feeds_in_background():
global loading_complete, last_update_time
try:
logger.info("Starting background RSS feed fetch")
articles = fetch_rss_feeds()
logger.info(f"Fetched {len(articles)} articles")
process_and_store_articles(articles)
last_update_time = time.time() # Update timestamp when new articles are added
logger.info("Background feed processing complete")
# Upload updated DB to Hugging Face Hub
upload_to_hf_hub()
loading_complete = True
except Exception as e:
logger.error(f"Error in background feed loading: {e}")
loading_complete = True
@app.route('/')
def index():
global loading_complete
loading_complete = False # Reset on each load
# Ensure Chroma DB is downloaded from Hugging Face Hub on first load
if not os.path.exists("chroma_db"):
logger.info("Downloading Chroma DB from Hugging Face Hub...")
download_from_hf_hub()
# Start background feed loading
threading.Thread(target=load_feeds_in_background, daemon=True).start()
try:
# Retrieve all articles from Chroma DB
all_docs = vector_db.get(include=['documents', 'metadatas'])
if not all_docs.get('metadatas'):
logger.info("No articles in DB yet")
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
# Process and categorize articles, getting only 10 most recent per category with strict deduplication
enriched_articles = []
seen_keys = set()
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
if not meta:
continue
title = meta.get("title", "No Title").strip()
link = meta.get("link", "").strip()
published = meta.get("published", "Unknown Date").strip()
# Use a more robust key including trimmed fields to prevent duplicates
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
# Try to parse published date, fallback to string sorting
try:
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
except (ValueError, TypeError):
# Fallback to a very old date for sorting if parsing fails
published = "1970-01-01T00:00:00"
enriched_articles.append({
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published,
"image": meta.get("image", "svg"),
})
# Sort by published date (handle both datetime and string)
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
# Group by category and limit to 10 most recent per category with final deduplication
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
if cat not in categorized_articles:
categorized_articles[cat] = []
# Add only if not already in the category list (extra deduplication)
key = f"{article['title']}|{article['link']}|{article['published']}"
if key not in [f"{a['title']}|{a['link']}|{a['published']}" for a in categorized_articles[cat]]:
categorized_articles[cat].append(article)
# Limit to 10 most recent per category and sort again for safety
for cat in categorized_articles:
unique_articles = []
seen_cat_keys = set()
for article in sorted(categorized_articles[cat], key=lambda x: x["published"], reverse=True):
key = f"{article['title']}|{article['link']}|{article['published']}"
if key not in seen_cat_keys:
seen_cat_keys.add(key)
unique_articles.append(article)
categorized_articles[cat] = unique_articles[:10]
logger.info(f"Displaying articles: {sum(len(articles) for articles in categorized_articles.values())} total")
return render_template("index.html",
categorized_articles=categorized_articles,
has_articles=True,
loading=True)
except Exception as e:
logger.error(f"Error retrieving articles: {e}")
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
@app.route('/search', methods=['POST'])
def search():
query = request.form.get('search')
if not query:
logger.info("Empty search query received")
return render_template("index.html", categorized_articles={}, has_articles=False, loading=False)
try:
logger.info(f"Searching for: {query}")
# Embed the query using the same embedding model as vector_db
results = vector_db.similarity_search(query, k=10)
logger.info(f"Search returned {len(results)} results")
enriched_articles = []
seen_keys = set()
for doc in results:
meta = doc.metadata
title = meta.get("title", "No Title").strip()
link = meta.get("link", "").strip()
published = meta.get("published", "Unknown Date").strip()
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
enriched_articles.append({
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published,
"image": meta.get("image", "svg"),
})
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
logger.info(f"Found {len(enriched_articles)} unique articles across {len(categorized_articles)} categories")
return render_template("index.html", categorized_articles=categorized_articles, has_articles=bool(enriched_articles), loading=False)
except Exception as e:
logger.error(f"Search error: {e}")
return render_template("index.html", categorized_articles={}, has_articles=False, loading=False)
@app.route('/check_loading')
def check_loading():
global loading_complete, last_update_time
if loading_complete:
return jsonify({"status": "complete", "last_update": last_update_time})
return jsonify({"status": "loading"}), 202
@app.route('/get_updates')
def get_updates():
global last_update_time
try:
all_docs = vector_db.get(include=['documents', 'metadatas'])
if not all_docs.get('metadatas'):
return jsonify({"articles": [], "last_update": last_update_time})
enriched_articles = []
seen_keys = set()
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
if not meta:
continue
title = meta.get("title", "No Title").strip()
link = meta.get("link", "").strip()
published = meta.get("published", "Unknown Date").strip()
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
try:
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
except (ValueError, TypeError):
published = "1970-01-01T00:00:00" # Fallback to a very old date
enriched_articles.append({
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published,
"image": meta.get("image", "svg"),
})
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
if cat not in categorized_articles:
categorized_articles[cat] = []
# Extra deduplication for category
key = f"{article['title']}|{article['link']}|{article['published']}"
if key not in [f"{a['title']}|{a['link']}|{a['published']}" for a in categorized_articles[cat]]:
categorized_articles[cat].append(article)
# Limit to 10 most recent per category with final deduplication
for cat in categorized_articles:
unique_articles = []
seen_cat_keys = set()
for article in sorted(categorized_articles[cat], key=lambda x: x["published"], reverse=True):
key = f"{article['title']}|{article['link']}|{article['published']}"
if key not in seen_cat_keys:
seen_cat_keys.add(key)
unique_articles.append(article)
categorized_articles[cat] = unique_articles[:10]
return jsonify({"articles": categorized_articles, "last_update": last_update_time})
except Exception as e:
logger.error(f"Error fetching updates: {e}")
return jsonify({"articles": {}, "last_update": last_update_time}), 500
@app.route('/get_all_articles/<category>')
def get_all_articles(category):
try:
all_docs = vector_db.get(include=['documents', 'metadatas'])
if not all_docs.get('metadatas'):
return jsonify({"articles": [], "category": category})
enriched_articles = []
seen_keys = set()
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
if not meta or meta.get("category") != category:
continue
title = meta.get("title", "No Title").strip()
link = meta.get("link", "").strip()
published = meta.get("published", "Unknown Date").strip()
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
try:
published = datetime.strptime(published, "%Y-%m-%d %H:%M:%S").isoformat() if "Unknown" not in published else published
except (ValueError, TypeError):
published = "1970-01-01T00:00:00" # Fallback to a very old date
enriched_articles.append({
"title": title,
"link": link,
"description": meta.get("original_description", "No Description"),
"category": meta.get("category", "Uncategorized"),
"published": published,
"image": meta.get("image", "svg"),
})
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
return jsonify({"articles": enriched_articles, "category": category})
except Exception as e:
logger.error(f"Error fetching all articles for category {category}: {e}")
return jsonify({"articles": [], "category": category}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860) |