Spaces:
Sleeping
Sleeping
File size: 9,957 Bytes
430a9bd 098c670 7dc6a2c 430a9bd 8a1ae42 430a9bd 098c670 bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd 15033cb 430a9bd 7dc6a2c 430a9bd 7dc6a2c 430a9bd 15033cb 430a9bd 15033cb 430a9bd 7dc6a2c 430a9bd 4f97b8a 430a9bd bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login
import shutil
import rss_feeds
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_ARTICLES_PER_FEED = 1000
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles" # Explicitly name the collection
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()
# Initialize embedding model (global, reusable)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Initialize vector DB with a specific collection name
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
from datetime import datetime
import dateutil.parser # Add this dependency: pip install python-dateutil
def fetch_rss_feeds():
articles = []
seen_keys = set()
for feed_url in RSS_FEEDS:
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title = entry.get("title", "No Title").strip()
link = entry.get("link", "").strip()
description = entry.get("summary", entry.get("description", "No Description")).strip()
# Try multiple date fields and parse flexibly
published = "Unknown Date"
for date_field in ["published", "updated", "created"]:
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError) as e:
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
continue
key = f"{title}|{link}|{published}"
if key not in seen_keys:
seen_keys.add(key)
# Try multiple image sources
image = "svg" # Default fallback
for img_source in [
lambda e: e.get("media_content", [{}])[0].get("url"),
lambda e: e.get("media_thumbnail", [{}])[0].get("url"),
lambda e: e.get("enclosure", {}).get("url"),
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), None),
]:
try:
img = img_source(entry)
if img:
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published,
"category": categorize_feed(feed_url),
"image": image,
})
article_count += 1
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if "nature" in url or "science.org" in url or "arxiv.org" in url or "plos.org" in url or "annualreviews.org" in url or "journals.uchicago.edu" in url or "jneurosci.org" in url or "cell.com" in url or "nejm.org" in url or "lancet.com" in url:
return "Academic Papers"
elif "reuters.com/business" in url or "bloomberg.com" in url or "ft.com" in url or "marketwatch.com" in url or "cnbc.com" in url or "foxbusiness.com" in url or "wsj.com" in url or "bworldonline.com" in url or "economist.com" in url or "forbes.com" in url:
return "Business"
elif "investing.com" in url or "cnbc.com/market" in url or "marketwatch.com/market" in url or "fool.co.uk" in url or "zacks.com" in url or "seekingalpha.com" in url or "barrons.com" in url or "yahoofinance.com" in url:
return "Stocks & Markets"
elif "whitehouse.gov" in url or "state.gov" in url or "commerce.gov" in url or "transportation.gov" in url or "ed.gov" in url or "dol.gov" in url or "justice.gov" in url or "federalreserve.gov" in url or "occ.gov" in url or "sec.gov" in url or "bls.gov" in url or "usda.gov" in url or "gao.gov" in url or "cbo.gov" in url or "fema.gov" in url or "defense.gov" in url or "hhs.gov" in url or "energy.gov" in url or "interior.gov" in url:
return "Federal Government"
elif "weather.gov" in url or "metoffice.gov.uk" in url or "accuweather.com" in url or "weatherunderground.com" in url or "noaa.gov" in url or "wunderground.com" in url or "climate.gov" in url or "ecmwf.int" in url or "bom.gov.au" in url:
return "Weather"
elif "data.worldbank.org" in url or "imf.org" in url or "un.org" in url or "oecd.org" in url or "statista.com" in url or "kff.org" in url or "who.int" in url or "cdc.gov" in url or "bea.gov" in url or "census.gov" in url or "fdic.gov" in url:
return "Data & Statistics"
elif "nasa" in url or "spaceweatherlive" in url or "space" in url or "universetoday" in url or "skyandtelescope" in url or "esa" in url:
return "Space"
elif "sciencedaily" in url or "quantamagazine" in url or "smithsonianmag" in url or "popsci" in url or "discovermagazine" in url or "scientificamerican" in url or "newscientist" in url or "livescience" in url or "atlasobscura" in url:
return "Science"
elif "wired" in url or "techcrunch" in url or "arstechnica" in url or "gizmodo" in url or "theverge" in url:
return "Tech"
elif "horoscope" in url or "astrostyle" in url:
return "Astrology"
elif "cnn_allpolitics" in url or "bbci.co.uk/news/politics" in url or "reuters.com/arc/outboundfeeds/newsletter-politics" in url or "politico.com/rss/politics" in url or "thehill" in url:
return "Politics"
elif "weather" in url or "swpc.noaa.gov" in url or "foxweather" in url:
return "Earth Weather"
elif "vogue" in url:
return "Lifestyle"
elif "phys.org" in url or "aps.org" in url or "physicsworld" in url:
return "Physics"
return "Uncategorized"
def process_and_store_articles(articles):
documents = []
existing_ids = set(vector_db.get()["ids"]) # Get existing document IDs to avoid duplicates
for article in articles:
try:
# Create a unique ID for deduplication
doc_id = f"{article['title']}|{article['link']}|{article['published']}"
if doc_id in existing_ids:
continue # Skip if already in DB
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=article["description"], metadata=metadata, id=doc_id)
documents.append(doc)
except Exception as e:
logger.error(f"Error processing article {article['title']}: {e}")
if documents:
try:
vector_db.add_documents(documents)
vector_db.persist() # Explicitly persist changes
logger.info(f"Added {len(documents)} new articles to DB")
except Exception as e:
logger.error(f"Error storing articles: {e}")
def download_from_hf_hub():
# Only download if the local DB doesn’t exist (initial setup)
if not os.path.exists(LOCAL_DB_DIR):
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
logger.info(f"Downloading Chroma DB from {REPO_ID}...")
hf_api.download_repo(repo_id=REPO_ID, repo_type="dataset", local_dir=LOCAL_DB_DIR, token=HF_API_TOKEN)
except Exception as e:
logger.error(f"Error downloading from Hugging Face Hub: {e}")
raise
else:
logger.info("Local Chroma DB already exists, skipping download.")
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
for root, _, files in os.walk(LOCAL_DB_DIR):
for file in files:
local_path = os.path.join(root, file)
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
hf_api.upload_file(
path_or_fileobj=local_path,
path_in_repo=remote_path,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN
)
logger.info(f"Database uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
raise
if __name__ == "__main__":
articles = fetch_rss_feeds()
process_and_store_articles(articles)
upload_to_hf_hub() |