Spaces:
Sleeping
Sleeping
File size: 12,108 Bytes
430a9bd 098c670 a69bc3b 4a45db6 7dc6a2c 430a9bd a69bc3b 430a9bd 098c670 a69bc3b 430a9bd bc16436 430a9bd bc16436 430a9bd 4a45db6 430a9bd 7dc6a2c 430a9bd 7dc6a2c 4a45db6 15033cb 4a45db6 15033cb 4a45db6 a13e6db 430a9bd 15033cb 4a45db6 15033cb 4a45db6 15033cb 430a9bd 7dc6a2c a69bc3b 430a9bd 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a 4a45db6 4f97b8a a69bc3b 430a9bd bc16436 430a9bd 4a45db6 a13e6db 4a45db6 a13e6db bc16436 a69bc3b 430a9bd a13e6db 430a9bd bc16436 430a9bd bc16436 430a9bd bc16436 430a9bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login
import shutil
import rss_feeds
from datetime import datetime
import dateutil.parser
import hashlib
import re # For cleaning HTML and whitespace
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_ARTICLES_PER_FEED = 5
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()
# Initialize embedding model (global, reusable)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Initialize vector DB with a specific collection name
vector_db = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=embedding_model,
collection_name=COLLECTION_NAME
)
def clean_text(text):
"""Clean text by removing HTML tags and extra whitespace."""
if not text or not isinstance(text, str):
return ""
# Remove HTML tags
text = re.sub(r'<.*?>', '', text)
# Normalize whitespace (remove extra spaces, newlines, tabs)
text = ' '.join(text.split())
return text.strip().lower()
def fetch_rss_feeds():
articles = []
seen_keys = set()
for feed_url in RSS_FEEDS:
try:
logger.info(f"Fetching {feed_url}")
feed = feedparser.parse(feed_url)
if feed.bozo:
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
continue
article_count = 0
for entry in feed.entries:
if article_count >= MAX_ARTICLES_PER_FEED:
break
title = entry.get("title", "No Title")
link = entry.get("link", "")
description = entry.get("summary", entry.get("description", ""))
# Clean and normalize all text fields
title = clean_text(title)
link = clean_text(link)
description = clean_text(description)
# Try multiple date fields and parse flexibly
published = "Unknown Date"
for date_field in ["published", "updated", "created", "pubDate"]: # Added "pubDate" for broader compatibility
if date_field in entry:
try:
parsed_date = dateutil.parser.parse(entry[date_field])
published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
break
except (ValueError, TypeError) as e:
logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
continue
# Use a robust key for deduplication, including cleaned fields
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest() # Switched to SHA256 for better uniqueness
key = f"{title}|{link}|{published}|{description_hash}"
if key not in seen_keys:
seen_keys.add(key)
# Try multiple image sources
image = "svg" # Default fallback
for img_source in [
lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
]:
try:
img = img_source(entry)
if img and img.strip():
image = img
break
except (IndexError, AttributeError, TypeError):
continue
articles.append({
"title": title,
"link": link,
"description": description,
"published": published,
"category": categorize_feed(feed_url),
"image": image,
})
article_count += 1
else:
logger.debug(f"Duplicate article skipped in feed {feed_url}: {key}")
except Exception as e:
logger.error(f"Error fetching {feed_url}: {e}")
logger.info(f"Total articles fetched: {len(articles)}")
return articles
def categorize_feed(url):
if "nature" in url.lower() or "science.org" in url.lower() or "arxiv.org" in url.lower() or "plos.org" in url.lower() or "annualreviews.org" in url.lower() or "journals.uchicago.edu" in url.lower() or "jneurosci.org" in url.lower() or "cell.com" in url.lower() or "nejm.org" in url.lower() or "lancet.com" in url.lower():
return "Academic Papers"
elif "reuters.com/business" in url.lower() or "bloomberg.com" in url.lower() or "ft.com" in url.lower() or "marketwatch.com" in url.lower() or "cnbc.com" in url.lower() or "foxbusiness.com" in url.lower() or "wsj.com" in url.lower() or "bworldonline.com" in url.lower() or "economist.com" in url.lower() or "forbes.com" in url.lower():
return "Business"
elif "investing.com" in url.lower() or "cnbc.com/market" in url.lower() or "marketwatch.com/market" in url.lower() or "fool.co.uk" in url.lower() or "zacks.com" in url.lower() or "seekingalpha.com" in url.lower() or "barrons.com" in url.lower() or "yahoofinance.com" in url.lower():
return "Stocks & Markets"
elif "whitehouse.gov" in url.lower() or "state.gov" in url.lower() or "commerce.gov" in url.lower() or "transportation.gov" in url.lower() or "ed.gov" in url.lower() or "dol.gov" in url.lower() or "justice.gov" in url.lower() or "federalreserve.gov" in url.lower() or "occ.gov" in url.lower() or "sec.gov" in url.lower() or "bls.gov" in url.lower() or "usda.gov" in url.lower() or "gao.gov" in url.lower() or "cbo.gov" in url.lower() or "fema.gov" in url.lower() or "defense.gov" in url.lower() or "hhs.gov" in url.lower() or "energy.gov" in url.lower() or "interior.gov" in url.lower():
return "Federal Government"
elif "weather.gov" in url.lower() or "metoffice.gov.uk" in url.lower() or "accuweather.com" in url.lower() or "weatherunderground.com" in url.lower() or "noaa.gov" in url.lower() or "wunderground.com" in url.lower() or "climate.gov" in url.lower() or "ecmwf.int" in url.lower() or "bom.gov.au" in url.lower():
return "Weather"
elif "data.worldbank.org" in url.lower() or "imf.org" in url.lower() or "un.org" in url.lower() or "oecd.org" in url.lower() or "statista.com" in url.lower() or "kff.org" in url.lower() or "who.int" in url.lower() or "cdc.gov" in url.lower() or "bea.gov" in url.lower() or "census.gov" in url.lower() or "fdic.gov" in url.lower():
return "Data & Statistics"
elif "nasa" in url.lower() or "spaceweatherlive" in url.lower() or "space" in url.lower() or "universetoday" in url.lower() or "skyandtelescope" in url.lower() or "esa" in url.lower():
return "Space"
elif "sciencedaily" in url.lower() or "quantamagazine" in url.lower() or "smithsonianmag" in url.lower() or "popsci" in url.lower() or "discovermagazine" in url.lower() or "scientificamerican" in url.lower() or "newscientist" in url.lower() or "livescience" in url.lower() or "atlasobscura" in url.lower():
return "Science"
elif "wired" in url.lower() or "techcrunch" in url.lower() or "arstechnica" in url.lower() or "gizmodo" in url.lower() or "theverge" in url.lower():
return "Tech"
elif "horoscope" in url.lower() or "astrostyle" in url.lower():
return "Astrology"
elif "cnn_allpolitics" in url.lower() or "bbci.co.uk/news/politics" in url.lower() or "reuters.com/arc/outboundfeeds/newsletter-politics" in url.lower() or "politico.com/rss/politics" in url.lower() or "thehill" in url.lower():
return "Politics"
elif "weather" in url.lower() or "swpc.noaa.gov" in url.lower() or "foxweather" in url.lower():
return "Earth Weather"
elif "vogue" in url.lower():
return "Lifestyle"
elif "phys.org" in url.lower() or "aps.org" in url.lower() or "physicsworld" in url.lower():
return "Physics"
return "Uncategorized"
def process_and_store_articles(articles):
documents = []
existing_ids = set(vector_db.get()["ids"]) # Get existing document IDs to avoid duplicates
for article in articles:
try:
# Clean and normalize all fields
title = clean_text(article["title"])
link = clean_text(article["link"])
description = clean_text(article["description"])
published = article["published"]
description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
doc_id = f"{title}|{link}|{published}|{description_hash}"
if doc_id in existing_ids:
logger.debug(f"Skipping duplicate in DB: {doc_id}")
continue
metadata = {
"title": article["title"],
"link": article["link"],
"original_description": article["description"],
"published": article["published"],
"category": article["category"],
"image": article["image"],
}
doc = Document(page_content=description, metadata=metadata, id=doc_id)
documents.append(doc)
except Exception as e:
logger.error(f"Error processing article {article['title']}: {e}")
if documents:
try:
vector_db.add_documents(documents)
vector_db.persist() # Explicitly persist changes
logger.info(f"Added {len(documents)} new articles to DB")
except Exception as e:
logger.error(f"Error storing articles: {e}")
def download_from_hf_hub():
# Only download if the local DB doesn’t exist (initial setup)
if not os.path.exists(LOCAL_DB_DIR):
try:
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
logger.info(f"Downloading Chroma DB from {REPO_ID}...")
hf_api.download_repo(repo_id=REPO_ID, repo_type="dataset", local_dir=LOCAL_DB_DIR, token=HF_API_TOKEN)
except Exception as e:
logger.error(f"Error downloading from Hugging Face Hub: {e}")
raise
else:
logger.info("Local Chroma DB already exists, skipping download.")
def upload_to_hf_hub():
if os.path.exists(LOCAL_DB_DIR):
try:
logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
for root, _, files in os.walk(LOCAL_DB_DIR):
for file in files:
local_path = os.path.join(root, file)
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
hf_api.upload_file(
path_or_fileobj=local_path,
path_in_repo=remote_path,
repo_id=REPO_ID,
repo_type="dataset",
token=HF_API_TOKEN
)
logger.info(f"Database uploaded to: {REPO_ID}")
except Exception as e:
logger.error(f"Error uploading to Hugging Face Hub: {e}")
raise
if __name__ == "__main__":
articles = fetch_rss_feeds()
process_and_store_articles(articles)
upload_to_hf_hub() |