File size: 10,772 Bytes
a058939
430a9bd
 
 
 
 
 
 
 
098c670
a69bc3b
4a45db6
 
a058939
7dc6a2c
430a9bd
 
 
 
 
830715d
430a9bd
098c670
a69bc3b
430a9bd
 
 
 
 
 
 
bc16436
430a9bd
bc16436
 
 
 
 
 
 
430a9bd
4a45db6
 
 
 
 
 
 
 
430a9bd
 
 
 
 
 
 
 
 
 
7dc6a2c
430a9bd
7dc6a2c
 
4a45db6
 
 
 
 
 
 
15033cb
 
a058939
15033cb
 
 
 
 
 
 
 
 
a058939
a13e6db
430a9bd
 
a058939
15033cb
4a45db6
 
 
 
15033cb
 
 
4a45db6
 
15033cb
 
 
 
430a9bd
 
 
 
 
 
 
 
7dc6a2c
430a9bd
 
 
 
 
 
a058939
 
 
 
 
 
 
 
 
 
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
4f97b8a
a058939
 
 
a69bc3b
430a9bd
 
a058939
430a9bd
 
4a45db6
 
 
a13e6db
4a45db6
a13e6db
bc16436
a69bc3b
 
430a9bd
 
 
 
 
 
 
 
a13e6db
430a9bd
a058939
430a9bd
 
 
 
 
 
a058939
 
430a9bd
 
 
 
bc16436
 
 
 
a058939
bc16436
 
 
a058939
430a9bd
 
 
 
bc16436
430a9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a058939
430a9bd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# rss_processor.py
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login
import shutil
import rss_feeds
from datetime import datetime
import dateutil.parser
import hashlib
import re

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_ARTICLES_PER_FEED = 10
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = rss_feeds.RSS_FEEDS
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"

# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()

# Initialize embedding model (global, reusable)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Initialize vector DB with a specific collection name
vector_db = Chroma(
    persist_directory=LOCAL_DB_DIR,
    embedding_function=embedding_model,
    collection_name=COLLECTION_NAME
)

def clean_text(text):
    """Clean text by removing HTML tags and extra whitespace."""
    if not text or not isinstance(text, str):
        return ""
    text = re.sub(r'<.*?>', '', text)
    text = ' '.join(text.split())
    return text.strip().lower()

def fetch_rss_feeds():
    articles = []
    seen_keys = set()
    for feed_url in RSS_FEEDS:
        try:
            logger.info(f"Fetching {feed_url}")
            feed = feedparser.parse(feed_url)
            if feed.bozo:
                logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
                continue
            article_count = 0
            for entry in feed.entries:
                if article_count >= MAX_ARTICLES_PER_FEED:
                    break
                title = entry.get("title", "No Title")
                link = entry.get("link", "")
                description = entry.get("summary", entry.get("description", ""))
                
                title = clean_text(title)
                link = clean_text(link)
                description = clean_text(description)

                published = "Unknown Date"
                for date_field in ["published", "updated", "created", "pubDate"]:
                    if date_field in entry:
                        try:
                            parsed_date = dateutil.parser.parse(entry[date_field])
                            published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
                            break
                        except (ValueError, TypeError) as e:
                            logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
                            continue

                description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
                key = f"{title}|{link}|{published}|{description_hash}"
                if key not in seen_keys:
                    seen_keys.add(key)
                    image = "svg"
                    for img_source in [
                        lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
                        lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
                        lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
                        lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
                    ]:
                        try:
                            img = img_source(entry)
                            if img and img.strip():
                                image = img
                                break
                        except (IndexError, AttributeError, TypeError):
                            continue

                    articles.append({
                        "title": title,
                        "link": link,
                        "description": description,
                        "published": published,
                        "category": categorize_feed(feed_url),
                        "image": image,
                    })
                    article_count += 1
        except Exception as e:
            logger.error(f"Error fetching {feed_url}: {e}")
    logger.info(f"Total articles fetched: {len(articles)}")
    return articles

def categorize_feed(url):
    """Categorize an RSS feed based on its URL."""
    if not url or not isinstance(url, str):
        logger.warning(f"Invalid URL provided for categorization: {url}")
        return "Uncategorized"

    url = url.lower().strip()  # Normalize the URL

    logger.debug(f"Categorizing URL: {url}")  # Add debugging for visibility

    if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
        return "Academic Papers"
    elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
        return "Business"
    elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
        return "Stocks & Markets"
    elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
        return "Federal Government"
    elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
        return "Weather"
    elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
        return "Data & Statistics"
    elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
        return "Space"
    elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
        return "Science"
    elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
        return "Tech"
    elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
        return "Astrology"
    elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
        return "Politics"
    elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
        return "Earth Weather"
    elif "vogue" in url:
        return "Lifestyle"
    elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
        return "Physics"
    else:
        logger.warning(f"No matching category found for URL: {url}")
        return "Uncategorized"

def process_and_store_articles(articles):
    documents = []
    existing_ids = set(vector_db.get()["ids"])  # Load existing IDs once
    for article in articles:
        try:
            title = clean_text(article["title"])
            link = clean_text(article["link"])
            description = clean_text(article["description"])
            published = article["published"]
            description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
            doc_id = f"{title}|{link}|{published}|{description_hash}"
            if doc_id in existing_ids:
                logger.debug(f"Skipping duplicate in DB: {doc_id}")
                continue
            metadata = {
                "title": article["title"],
                "link": article["link"],
                "original_description": article["description"],
                "published": article["published"],
                "category": article["category"],
                "image": article["image"],
            }
            doc = Document(page_content=description, metadata=metadata, id=doc_id)
            documents.append(doc)
            existing_ids.add(doc_id)  # Update in-memory set to avoid duplicates within this batch
        except Exception as e:
            logger.error(f"Error processing article {article['title']}: {e}")
    
    if documents:
        try:
            vector_db.add_documents(documents)
            vector_db.persist()
            logger.info(f"Added {len(documents)} new articles to DB. Total documents: {len(vector_db.get()['ids'])}")
        except Exception as e:
            logger.error(f"Error storing articles: {e}")

def download_from_hf_hub():
    if not os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
            logger.info(f"Downloading Chroma DB from {REPO_ID}...")
            hf_api.hf_hub_download(repo_id=REPO_ID, filename="chroma_db", local_dir=LOCAL_DB_DIR, repo_type="dataset", token=HF_API_TOKEN)
        except Exception as e:
            logger.error(f"Error downloading from Hugging Face Hub: {e}")
    else:
        logger.info("Local Chroma DB exists, loading existing data.")

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
            for root, _, files in os.walk(LOCAL_DB_DIR):
                for file in files:
                    local_path = os.path.join(root, file)
                    remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
                    hf_api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=remote_path,
                        repo_id=REPO_ID,
                        repo_type="dataset",
                        token=HF_API_TOKEN
                    )
            logger.info(f"Database uploaded to: {REPO_ID}")
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face Hub: {e}")

if __name__ == "__main__":
    download_from_hf_hub()  # Ensure DB is initialized
    articles = fetch_rss_feeds()
    process_and_store_articles(articles)
    upload_to_hf_hub()