import os import feedparser from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document import logging from huggingface_hub import HfApi, login import shutil import rss_feeds from datetime import datetime import dateutil.parser import hashlib import re # For cleaning HTML and whitespace # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants MAX_ARTICLES_PER_FEED = 5 LOCAL_DB_DIR = "chroma_db" RSS_FEEDS = rss_feeds.RSS_FEEDS COLLECTION_NAME = "news_articles" HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN") REPO_ID = "broadfield-dev/news-rag-db" # Initialize Hugging Face API login(token=HF_API_TOKEN) hf_api = HfApi() # Initialize embedding model (global, reusable) embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Initialize vector DB with a specific collection name vector_db = Chroma( persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model, collection_name=COLLECTION_NAME ) def clean_text(text): """Clean text by removing HTML tags and extra whitespace.""" if not text or not isinstance(text, str): return "" # Remove HTML tags text = re.sub(r'<.*?>', '', text) # Normalize whitespace (remove extra spaces, newlines, tabs) text = ' '.join(text.split()) return text.strip().lower() def fetch_rss_feeds(): articles = [] seen_keys = set() for feed_url in RSS_FEEDS: try: logger.info(f"Fetching {feed_url}") feed = feedparser.parse(feed_url) if feed.bozo: logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}") continue article_count = 0 for entry in feed.entries: if article_count >= MAX_ARTICLES_PER_FEED: break title = entry.get("title", "No Title") link = entry.get("link", "") description = entry.get("summary", entry.get("description", "")) # Clean and normalize all text fields title = clean_text(title) link = clean_text(link) description = clean_text(description) # Try multiple date fields and parse flexibly published = "Unknown Date" for date_field in ["published", "updated", "created", "pubDate"]: # Added "pubDate" for broader compatibility if date_field in entry: try: parsed_date = dateutil.parser.parse(entry[date_field]) published = parsed_date.strftime("%Y-%m-%d %H:%M:%S") break except (ValueError, TypeError) as e: logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}") continue # Use a robust key for deduplication, including cleaned fields description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest() # Switched to SHA256 for better uniqueness key = f"{title}|{link}|{published}|{description_hash}" if key not in seen_keys: seen_keys.add(key) # Try multiple image sources image = "svg" # Default fallback for img_source in [ lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "", lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "", lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "", lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")), ]: try: img = img_source(entry) if img and img.strip(): image = img break except (IndexError, AttributeError, TypeError): continue articles.append({ "title": title, "link": link, "description": description, "published": published, "category": categorize_feed(feed_url), "image": image, }) article_count += 1 else: logger.debug(f"Duplicate article skipped in feed {feed_url}: {key}") except Exception as e: logger.error(f"Error fetching {feed_url}: {e}") logger.info(f"Total articles fetched: {len(articles)}") return articles def categorize_feed(url): if "nature" in url.lower() or "science.org" in url.lower() or "arxiv.org" in url.lower() or "plos.org" in url.lower() or "annualreviews.org" in url.lower() or "journals.uchicago.edu" in url.lower() or "jneurosci.org" in url.lower() or "cell.com" in url.lower() or "nejm.org" in url.lower() or "lancet.com" in url.lower(): return "Academic Papers" elif "reuters.com/business" in url.lower() or "bloomberg.com" in url.lower() or "ft.com" in url.lower() or "marketwatch.com" in url.lower() or "cnbc.com" in url.lower() or "foxbusiness.com" in url.lower() or "wsj.com" in url.lower() or "bworldonline.com" in url.lower() or "economist.com" in url.lower() or "forbes.com" in url.lower(): return "Business" elif "investing.com" in url.lower() or "cnbc.com/market" in url.lower() or "marketwatch.com/market" in url.lower() or "fool.co.uk" in url.lower() or "zacks.com" in url.lower() or "seekingalpha.com" in url.lower() or "barrons.com" in url.lower() or "yahoofinance.com" in url.lower(): return "Stocks & Markets" elif "whitehouse.gov" in url.lower() or "state.gov" in url.lower() or "commerce.gov" in url.lower() or "transportation.gov" in url.lower() or "ed.gov" in url.lower() or "dol.gov" in url.lower() or "justice.gov" in url.lower() or "federalreserve.gov" in url.lower() or "occ.gov" in url.lower() or "sec.gov" in url.lower() or "bls.gov" in url.lower() or "usda.gov" in url.lower() or "gao.gov" in url.lower() or "cbo.gov" in url.lower() or "fema.gov" in url.lower() or "defense.gov" in url.lower() or "hhs.gov" in url.lower() or "energy.gov" in url.lower() or "interior.gov" in url.lower(): return "Federal Government" elif "weather.gov" in url.lower() or "metoffice.gov.uk" in url.lower() or "accuweather.com" in url.lower() or "weatherunderground.com" in url.lower() or "noaa.gov" in url.lower() or "wunderground.com" in url.lower() or "climate.gov" in url.lower() or "ecmwf.int" in url.lower() or "bom.gov.au" in url.lower(): return "Weather" elif "data.worldbank.org" in url.lower() or "imf.org" in url.lower() or "un.org" in url.lower() or "oecd.org" in url.lower() or "statista.com" in url.lower() or "kff.org" in url.lower() or "who.int" in url.lower() or "cdc.gov" in url.lower() or "bea.gov" in url.lower() or "census.gov" in url.lower() or "fdic.gov" in url.lower(): return "Data & Statistics" elif "nasa" in url.lower() or "spaceweatherlive" in url.lower() or "space" in url.lower() or "universetoday" in url.lower() or "skyandtelescope" in url.lower() or "esa" in url.lower(): return "Space" elif "sciencedaily" in url.lower() or "quantamagazine" in url.lower() or "smithsonianmag" in url.lower() or "popsci" in url.lower() or "discovermagazine" in url.lower() or "scientificamerican" in url.lower() or "newscientist" in url.lower() or "livescience" in url.lower() or "atlasobscura" in url.lower(): return "Science" elif "wired" in url.lower() or "techcrunch" in url.lower() or "arstechnica" in url.lower() or "gizmodo" in url.lower() or "theverge" in url.lower(): return "Tech" elif "horoscope" in url.lower() or "astrostyle" in url.lower(): return "Astrology" elif "cnn_allpolitics" in url.lower() or "bbci.co.uk/news/politics" in url.lower() or "reuters.com/arc/outboundfeeds/newsletter-politics" in url.lower() or "politico.com/rss/politics" in url.lower() or "thehill" in url.lower(): return "Politics" elif "weather" in url.lower() or "swpc.noaa.gov" in url.lower() or "foxweather" in url.lower(): return "Earth Weather" elif "vogue" in url.lower(): return "Lifestyle" elif "phys.org" in url.lower() or "aps.org" in url.lower() or "physicsworld" in url.lower(): return "Physics" return "Uncategorized" def process_and_store_articles(articles): documents = [] existing_ids = set(vector_db.get()["ids"]) # Get existing document IDs to avoid duplicates for article in articles: try: # Clean and normalize all fields title = clean_text(article["title"]) link = clean_text(article["link"]) description = clean_text(article["description"]) published = article["published"] description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest() doc_id = f"{title}|{link}|{published}|{description_hash}" if doc_id in existing_ids: logger.debug(f"Skipping duplicate in DB: {doc_id}") continue metadata = { "title": article["title"], "link": article["link"], "original_description": article["description"], "published": article["published"], "category": article["category"], "image": article["image"], } doc = Document(page_content=description, metadata=metadata, id=doc_id) documents.append(doc) except Exception as e: logger.error(f"Error processing article {article['title']}: {e}") if documents: try: vector_db.add_documents(documents) vector_db.persist() # Explicitly persist changes logger.info(f"Added {len(documents)} new articles to DB") except Exception as e: logger.error(f"Error storing articles: {e}") def download_from_hf_hub(): # Only download if the local DB doesn’t exist (initial setup) if not os.path.exists(LOCAL_DB_DIR): try: hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN) logger.info(f"Downloading Chroma DB from {REPO_ID}...") hf_api.download_repo(repo_id=REPO_ID, repo_type="dataset", local_dir=LOCAL_DB_DIR, token=HF_API_TOKEN) except Exception as e: logger.error(f"Error downloading from Hugging Face Hub: {e}") raise else: logger.info("Local Chroma DB already exists, skipping download.") def upload_to_hf_hub(): if os.path.exists(LOCAL_DB_DIR): try: logger.info(f"Uploading updated Chroma DB to {REPO_ID}...") for root, _, files in os.walk(LOCAL_DB_DIR): for file in files: local_path = os.path.join(root, file) remote_path = os.path.relpath(local_path, LOCAL_DB_DIR) hf_api.upload_file( path_or_fileobj=local_path, path_in_repo=remote_path, repo_id=REPO_ID, repo_type="dataset", token=HF_API_TOKEN ) logger.info(f"Database uploaded to: {REPO_ID}") except Exception as e: logger.error(f"Error uploading to Hugging Face Hub: {e}") raise if __name__ == "__main__": articles = fetch_rss_feeds() process_and_store_articles(articles) upload_to_hf_hub()