Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
from PIL import Image
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
import requests
|
7 |
from datetime import datetime, timedelta
|
8 |
import io
|
@@ -111,13 +110,12 @@ def create_gif(frames, output_path, duration=0.5):
|
|
111 |
return output_path
|
112 |
|
113 |
def handle_fetch(start_date, end_date, ident, size, tool):
|
114 |
-
"""Fetch SDO images and return frames for preview."""
|
115 |
frames, error = fetch_sdo_images(start_date, end_date, ident, size, tool)
|
116 |
if error:
|
117 |
-
return error, []
|
118 |
-
# Convert frames to PIL Images for preview
|
119 |
preview_frames = [Image.fromarray(frame) for frame in frames]
|
120 |
-
return "Fetched {} images successfully."
|
121 |
|
122 |
def analyze_images(frames, lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode):
|
123 |
"""Analyze frames for concentric circles, highlighting growing series."""
|
@@ -171,10 +169,8 @@ def analyze_images(frames, lower_bound, upper_bound, param1, param2, center_tole
|
|
171 |
|
172 |
# Prepare output based on display mode
|
173 |
if display_mode == "All Frames":
|
174 |
-
# Show pure, unprocessed frames
|
175 |
results = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)) for frame in frames]
|
176 |
elif display_mode == "Detected Frames":
|
177 |
-
# Show only frames with detected circles
|
178 |
for c in all_circle_data:
|
179 |
output_frame = cv2.cvtColor(c["output_frame"], cv2.COLOR_GRAY2RGB)
|
180 |
cv2.circle(output_frame, c["center"], c["radius"], (0, 255, 0), 2) # Green for detected
|
@@ -182,7 +178,6 @@ def analyze_images(frames, lower_bound, upper_bound, param1, param2, center_tole
|
|
182 |
cv2.circle(output_frame, c["center"], c["radius"] + 2, (255, 165, 0), 2) # Orange for growing
|
183 |
results.append(Image.fromarray(output_frame))
|
184 |
elif display_mode == "Both (Detected Replaces Original)":
|
185 |
-
# Show all frames, replacing detected frames with circles
|
186 |
for i, frame in enumerate(frames):
|
187 |
if i + 1 in [c["frame"] for c in all_circle_data]:
|
188 |
for c in all_circle_data:
|
@@ -293,12 +288,7 @@ with gr.Blocks(title="Solar CME Detection") as demo:
|
|
293 |
fetch_button.click(
|
294 |
fn=handle_fetch,
|
295 |
inputs=[start_date, end_date, ident, size, tool],
|
296 |
-
outputs=[report, preview]
|
297 |
-
js="() => {return {fetched_frames_state: []}}"
|
298 |
-
).then(
|
299 |
-
fn=lambda report, preview_frames: (preview_frames, report),
|
300 |
-
inputs=[report, preview],
|
301 |
-
outputs=[fetched_frames_state, report]
|
302 |
)
|
303 |
|
304 |
# Analyze button action
|
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
from PIL import Image
|
|
|
5 |
import requests
|
6 |
from datetime import datetime, timedelta
|
7 |
import io
|
|
|
110 |
return output_path
|
111 |
|
112 |
def handle_fetch(start_date, end_date, ident, size, tool):
|
113 |
+
"""Fetch SDO images and return frames for preview and state."""
|
114 |
frames, error = fetch_sdo_images(start_date, end_date, ident, size, tool)
|
115 |
if error:
|
116 |
+
return error, [], frames
|
|
|
117 |
preview_frames = [Image.fromarray(frame) for frame in frames]
|
118 |
+
return f"Fetched {len(frames)} images successfully.", preview_frames, frames
|
119 |
|
120 |
def analyze_images(frames, lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode):
|
121 |
"""Analyze frames for concentric circles, highlighting growing series."""
|
|
|
169 |
|
170 |
# Prepare output based on display mode
|
171 |
if display_mode == "All Frames":
|
|
|
172 |
results = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)) for frame in frames]
|
173 |
elif display_mode == "Detected Frames":
|
|
|
174 |
for c in all_circle_data:
|
175 |
output_frame = cv2.cvtColor(c["output_frame"], cv2.COLOR_GRAY2RGB)
|
176 |
cv2.circle(output_frame, c["center"], c["radius"], (0, 255, 0), 2) # Green for detected
|
|
|
178 |
cv2.circle(output_frame, c["center"], c["radius"] + 2, (255, 165, 0), 2) # Orange for growing
|
179 |
results.append(Image.fromarray(output_frame))
|
180 |
elif display_mode == "Both (Detected Replaces Original)":
|
|
|
181 |
for i, frame in enumerate(frames):
|
182 |
if i + 1 in [c["frame"] for c in all_circle_data]:
|
183 |
for c in all_circle_data:
|
|
|
288 |
fetch_button.click(
|
289 |
fn=handle_fetch,
|
290 |
inputs=[start_date, end_date, ident, size, tool],
|
291 |
+
outputs=[report, preview, fetched_frames_state]
|
|
|
|
|
|
|
|
|
|
|
292 |
)
|
293 |
|
294 |
# Analyze button action
|