Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,13 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
from PIL import Image
|
5 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
low_int = 10
|
8 |
high_int = 100
|
9 |
edge_thresh = 50
|
@@ -12,6 +18,42 @@ center_tol = 30
|
|
12 |
morph_dia = 5
|
13 |
min_rad = 70
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def extract_frames(gif_path):
|
16 |
"""Extract frames from a GIF and return as a list of numpy arrays."""
|
17 |
try:
|
@@ -30,16 +72,10 @@ def extract_frames(gif_path):
|
|
30 |
|
31 |
def preprocess_frame(frame, lower_bound, upper_bound, morph_iterations):
|
32 |
"""Preprocess a frame: isolate mid-to-light pixels and enhance circular patterns."""
|
33 |
-
# Apply Gaussian blur to reduce noise
|
34 |
blurred = cv2.GaussianBlur(frame, (9, 9), 0)
|
35 |
-
|
36 |
-
# Isolate mid-to-light pixels using user-defined intensity range
|
37 |
mask = cv2.inRange(blurred, lower_bound, upper_bound)
|
38 |
-
|
39 |
-
# Apply morphological operation to enhance circular patterns
|
40 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
41 |
enhanced = cv2.dilate(mask, kernel, iterations=morph_iterations)
|
42 |
-
|
43 |
return enhanced
|
44 |
|
45 |
def detect_circles(frame_diff, image_center, center_tolerance, param1, param2, min_radius=20, max_radius=200):
|
@@ -47,17 +83,15 @@ def detect_circles(frame_diff, image_center, center_tolerance, param1, param2, m
|
|
47 |
circles = cv2.HoughCircles(
|
48 |
frame_diff,
|
49 |
cv2.HOUGH_GRADIENT,
|
50 |
-
dp=1.5,
|
51 |
-
minDist=100,
|
52 |
-
param1=param1,
|
53 |
-
param2=param2,
|
54 |
minRadius=min_radius,
|
55 |
maxRadius=max_radius
|
56 |
)
|
57 |
-
|
58 |
if circles is not None:
|
59 |
circles = np.round(circles[0, :]).astype("int")
|
60 |
-
# Filter circles: only keep those centered near the image center
|
61 |
filtered_circles = []
|
62 |
for (x, y, r) in circles:
|
63 |
if (abs(x - image_center[0]) < center_tolerance and
|
@@ -66,54 +100,50 @@ def detect_circles(frame_diff, image_center, center_tolerance, param1, param2, m
|
|
66 |
return filtered_circles if filtered_circles else None
|
67 |
return None
|
68 |
|
69 |
-
def
|
70 |
-
"""
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
# Determine
|
84 |
height, width = frames[0].shape
|
85 |
-
image_center = (width // 2, height // 2)
|
86 |
-
|
87 |
-
# Initialize results
|
88 |
-
all_circle_data = [] # Store all detected circles
|
89 |
min_radius = int(min_rad)
|
90 |
-
max_radius = min(height, width) // 2
|
91 |
|
92 |
# Process frames and detect circles
|
|
|
93 |
for i in range(len(frames) - 1):
|
94 |
frame1 = preprocess_frame(frames[i], lower_bound, upper_bound, morph_iterations)
|
95 |
frame2 = preprocess_frame(frames[i + 1], lower_bound, upper_bound, morph_iterations)
|
96 |
-
|
97 |
-
# Compute absolute difference between consecutive frames
|
98 |
frame_diff = cv2.absdiff(frame2, frame1)
|
99 |
-
# Enhance contrast for the difference image
|
100 |
frame_diff = cv2.convertScaleAbs(frame_diff, alpha=3.0, beta=0)
|
101 |
-
|
102 |
-
# Detect circles centered at the Sun
|
103 |
circles = detect_circles(frame_diff, image_center, center_tolerance, param1, param2, min_radius, max_radius)
|
104 |
-
|
105 |
if circles:
|
106 |
-
|
107 |
-
largest_circle = max(circles, key=lambda c: c[2]) # Sort by radius
|
108 |
x, y, r = largest_circle
|
109 |
all_circle_data.append({
|
110 |
"frame": i + 1,
|
111 |
"center": (x, y),
|
112 |
"radius": r,
|
113 |
-
"output_frame": frames[i + 1]
|
114 |
})
|
115 |
|
116 |
-
# Find
|
117 |
growing_circle_data = []
|
118 |
current_series = []
|
119 |
if all_circle_data:
|
@@ -122,75 +152,141 @@ def analyze_gif(gif_file, lower_bound, upper_bound, param1, param2, center_toler
|
|
122 |
if all_circle_data[i]["radius"] > current_series[-1]["radius"]:
|
123 |
current_series.append(all_circle_data[i])
|
124 |
else:
|
125 |
-
# If the radius doesn't increase, check if the current series is the longest
|
126 |
if len(current_series) > len(growing_circle_data):
|
127 |
growing_circle_data = current_series.copy()
|
128 |
current_series = [all_circle_data[i]]
|
129 |
-
|
130 |
-
# Check the last series
|
131 |
if len(current_series) > len(growing_circle_data):
|
132 |
growing_circle_data = current_series.copy()
|
133 |
|
134 |
-
# Mark frames that are part of the growing series
|
135 |
growing_frames = set(c["frame"] for c in growing_circle_data)
|
136 |
-
|
137 |
-
# Generate output frames and report
|
138 |
results = []
|
139 |
-
report = "Analysis Report (as of
|
140 |
-
|
141 |
-
#
|
142 |
-
if
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
for c in all_circle_data:
|
145 |
-
# Visualize the frame with detected circle (green)
|
146 |
output_frame = cv2.cvtColor(c["output_frame"], cv2.COLOR_GRAY2RGB)
|
147 |
-
cv2.circle(output_frame,
|
148 |
-
|
149 |
-
# If the frame is part of the growing series, add a red circle
|
150 |
if c["frame"] in growing_frames:
|
151 |
-
cv2.circle(output_frame,
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
157 |
report += f"Frame {c['frame']}: Center at {c['center']}, Radius {c['radius']} pixels\n"
|
158 |
else:
|
159 |
report += "No circles detected.\n"
|
160 |
|
161 |
-
# Report the growing series
|
162 |
if growing_circle_data:
|
163 |
report += f"\nSeries of Frames with Growing Circles ({len(growing_circle_data)} frames):\n"
|
164 |
for c in growing_circle_data:
|
165 |
report += f"Frame {c['frame']}: Center at {c['center']}, Radius {c['radius']} pixels\n"
|
166 |
-
report += "\nConclusion: Growing concentric circles
|
167 |
else:
|
168 |
report += "\nNo growing concentric circles detected. CME may not be Earth-directed."
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
except Exception as e:
|
172 |
-
return f"Error during analysis: {str(e)}", []
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
]
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
-
|
|
|
3 |
import cv2
|
4 |
from PIL import Image
|
5 |
import matplotlib.pyplot as plt
|
6 |
+
import requests
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
import io
|
9 |
+
import os
|
10 |
+
from urllib.parse import urljoin
|
11 |
|
12 |
+
# Default parameters
|
13 |
low_int = 10
|
14 |
high_int = 100
|
15 |
edge_thresh = 50
|
|
|
18 |
morph_dia = 5
|
19 |
min_rad = 70
|
20 |
|
21 |
+
def fetch_sdo_images(start_date, end_date, ident="0171", size="1024", tool="hmiigr"):
|
22 |
+
"""Fetch SDO images from NASA URL for a given date range."""
|
23 |
+
try:
|
24 |
+
start = datetime.strptime(start_date, "%Y-%m-%d %H:%M:%S")
|
25 |
+
end = datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S")
|
26 |
+
if start > end:
|
27 |
+
return None, "Start date must be before end date."
|
28 |
+
|
29 |
+
base_url = "https://sdo.gsfc.nasa.gov/assets/img/browse/"
|
30 |
+
frames = []
|
31 |
+
current = start
|
32 |
+
while current <= end:
|
33 |
+
# Format URL: https://sdo.gsfc.nasa.gov/assets/img/browse/YEAR/MONTH/DAY/DATE_IDENT_SIZE_TOOL.jpg
|
34 |
+
date_str = current.strftime("%Y%m%d_%H%M%S")
|
35 |
+
year, month, day = current.strftime("%Y"), current.strftime("%m"), current.strftime("%d")
|
36 |
+
url = urljoin(base_url, f"{year}/{month}/{day}/{date_str}_{ident}_{size}_{tool}.jpg")
|
37 |
+
|
38 |
+
# Fetch image
|
39 |
+
try:
|
40 |
+
response = requests.get(url, timeout=5)
|
41 |
+
if response.status_code == 200:
|
42 |
+
img = Image.open(io.BytesIO(response.content)).convert('L') # Convert to grayscale
|
43 |
+
frames.append(np.array(img))
|
44 |
+
else:
|
45 |
+
print(f"Failed to fetch {url}: Status {response.status_code}")
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error fetching {url}: {str(e)}")
|
48 |
+
|
49 |
+
current += timedelta(minutes=12) # SDO images are typically 12 minutes apart
|
50 |
+
|
51 |
+
if not frames:
|
52 |
+
return None, "No images found in the specified date range."
|
53 |
+
return frames, None
|
54 |
+
except Exception as e:
|
55 |
+
return None, f"Error fetching images: {str(e)}"
|
56 |
+
|
57 |
def extract_frames(gif_path):
|
58 |
"""Extract frames from a GIF and return as a list of numpy arrays."""
|
59 |
try:
|
|
|
72 |
|
73 |
def preprocess_frame(frame, lower_bound, upper_bound, morph_iterations):
|
74 |
"""Preprocess a frame: isolate mid-to-light pixels and enhance circular patterns."""
|
|
|
75 |
blurred = cv2.GaussianBlur(frame, (9, 9), 0)
|
|
|
|
|
76 |
mask = cv2.inRange(blurred, lower_bound, upper_bound)
|
|
|
|
|
77 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
78 |
enhanced = cv2.dilate(mask, kernel, iterations=morph_iterations)
|
|
|
79 |
return enhanced
|
80 |
|
81 |
def detect_circles(frame_diff, image_center, center_tolerance, param1, param2, min_radius=20, max_radius=200):
|
|
|
83 |
circles = cv2.HoughCircles(
|
84 |
frame_diff,
|
85 |
cv2.HOUGH_GRADIENT,
|
86 |
+
dp=1.5,
|
87 |
+
minDist=100,
|
88 |
+
param1=param1,
|
89 |
+
param2=param2,
|
90 |
minRadius=min_radius,
|
91 |
maxRadius=max_radius
|
92 |
)
|
|
|
93 |
if circles is not None:
|
94 |
circles = np.round(circles[0, :]).astype("int")
|
|
|
95 |
filtered_circles = []
|
96 |
for (x, y, r) in circles:
|
97 |
if (abs(x - image_center[0]) < center_tolerance and
|
|
|
100 |
return filtered_circles if filtered_circles else None
|
101 |
return None
|
102 |
|
103 |
+
def create_gif(frames, output_path, duration=0.5):
|
104 |
+
"""Create a GIF from a list of frames."""
|
105 |
+
pil_frames = [Image.fromarray(frame) for frame in frames]
|
106 |
+
pil_frames[0].save(
|
107 |
+
output_path,
|
108 |
+
save_all=True,
|
109 |
+
append_images=pil_frames[1:],
|
110 |
+
duration=int(duration * 1000), # Duration in milliseconds
|
111 |
+
loop=0
|
112 |
+
)
|
113 |
+
return output_path
|
114 |
|
115 |
+
def analyze_images(frames, lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode):
|
116 |
+
"""Analyze frames for concentric circles, highlighting growing series."""
|
117 |
+
try:
|
118 |
+
if not frames or len(frames) < 2:
|
119 |
+
return "At least 2 frames are required for analysis.", [], None
|
120 |
|
121 |
+
# Determine image center
|
122 |
height, width = frames[0].shape
|
123 |
+
image_center = (width // 2, height // 2)
|
|
|
|
|
|
|
124 |
min_radius = int(min_rad)
|
125 |
+
max_radius = min(height, width) // 2
|
126 |
|
127 |
# Process frames and detect circles
|
128 |
+
all_circle_data = []
|
129 |
for i in range(len(frames) - 1):
|
130 |
frame1 = preprocess_frame(frames[i], lower_bound, upper_bound, morph_iterations)
|
131 |
frame2 = preprocess_frame(frames[i + 1], lower_bound, upper_bound, morph_iterations)
|
|
|
|
|
132 |
frame_diff = cv2.absdiff(frame2, frame1)
|
|
|
133 |
frame_diff = cv2.convertScaleAbs(frame_diff, alpha=3.0, beta=0)
|
|
|
|
|
134 |
circles = detect_circles(frame_diff, image_center, center_tolerance, param1, param2, min_radius, max_radius)
|
135 |
+
|
136 |
if circles:
|
137 |
+
largest_circle = max(circles, key=lambda c: c[2])
|
|
|
138 |
x, y, r = largest_circle
|
139 |
all_circle_data.append({
|
140 |
"frame": i + 1,
|
141 |
"center": (x, y),
|
142 |
"radius": r,
|
143 |
+
"output_frame": frames[i + 1]
|
144 |
})
|
145 |
|
146 |
+
# Find growing series
|
147 |
growing_circle_data = []
|
148 |
current_series = []
|
149 |
if all_circle_data:
|
|
|
152 |
if all_circle_data[i]["radius"] > current_series[-1]["radius"]:
|
153 |
current_series.append(all_circle_data[i])
|
154 |
else:
|
|
|
155 |
if len(current_series) > len(growing_circle_data):
|
156 |
growing_circle_data = current_series.copy()
|
157 |
current_series = [all_circle_data[i]]
|
|
|
|
|
158 |
if len(current_series) > len(growing_circle_data):
|
159 |
growing_circle_data = current_series.copy()
|
160 |
|
|
|
161 |
growing_frames = set(c["frame"] for c in growing_circle_data)
|
|
|
|
|
162 |
results = []
|
163 |
+
report = f"Analysis Report (as of {datetime.now().strftime('%I:%M %p PDT, %B %d, %Y')}):\n"
|
164 |
+
|
165 |
+
# Prepare output based on display mode
|
166 |
+
if display_mode == "All Frames":
|
167 |
+
for i, frame in enumerate(frames):
|
168 |
+
output_frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
169 |
+
if i + 1 in growing_frames:
|
170 |
+
for c in all_circle_data:
|
171 |
+
if c["frame"] == i + 1:
|
172 |
+
cv2.circle(output_frame, c["center"], c["radius"], (0, 255, 0), 2)
|
173 |
+
cv2.circle(output_frame, c["center"], c["radius"] + 2, (255, 0, 0), 2)
|
174 |
+
results.append(Image.fromarray(output_frame))
|
175 |
+
elif display_mode == "Detected Frames":
|
176 |
for c in all_circle_data:
|
|
|
177 |
output_frame = cv2.cvtColor(c["output_frame"], cv2.COLOR_GRAY2RGB)
|
178 |
+
cv2.circle(output_frame, c["center"], c["radius"], (0, 255, 0), 2)
|
|
|
|
|
179 |
if c["frame"] in growing_frames:
|
180 |
+
cv2.circle(output_frame, c["center"], c["radius"] + 2, (255, 0, 0), 2)
|
181 |
+
results.append(Image.fromarray(output_frame))
|
182 |
+
elif display_mode == "Both (Detected Replaces Original)":
|
183 |
+
for i, frame in enumerate(frames):
|
184 |
+
output_frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
185 |
+
if i + 1 in growing_frames:
|
186 |
+
for c in all_circle_data:
|
187 |
+
if c["frame"] == i + 1:
|
188 |
+
output_frame = cv2.cvtColor(c["output_frame"], cv2.COLOR_GRAY2RGB)
|
189 |
+
cv2.circle(output_frame, c["center"], c["radius"], (0, 255, 0), 2)
|
190 |
+
cv2.circle(output_frame, c["center"], c["radius"] + 2, (255, 0, 0), 2)
|
191 |
+
results.append(Image.fromarray(output_frame))
|
192 |
|
193 |
+
# Generate report
|
194 |
+
if all_circle_data:
|
195 |
+
report += f"\nAll Frames with Detected Circles ({len(all_circle_data)} frames):\n"
|
196 |
+
for c in all_circle_data:
|
197 |
report += f"Frame {c['frame']}: Center at {c['center']}, Radius {c['radius']} pixels\n"
|
198 |
else:
|
199 |
report += "No circles detected.\n"
|
200 |
|
|
|
201 |
if growing_circle_data:
|
202 |
report += f"\nSeries of Frames with Growing Circles ({len(growing_circle_data)} frames):\n"
|
203 |
for c in growing_circle_data:
|
204 |
report += f"Frame {c['frame']}: Center at {c['center']}, Radius {c['radius']} pixels\n"
|
205 |
+
report += "\nConclusion: Growing concentric circles detected, indicative of a potential Earth-directed CME."
|
206 |
else:
|
207 |
report += "\nNo growing concentric circles detected. CME may not be Earth-directed."
|
208 |
|
209 |
+
# Create GIF if results exist
|
210 |
+
gif_path = None
|
211 |
+
if results:
|
212 |
+
gif_frames = [np.array(img) for img in results]
|
213 |
+
gif_path = "output.gif"
|
214 |
+
create_gif(gif_frames, gif_path)
|
215 |
+
|
216 |
+
return report, results, gif_path
|
217 |
except Exception as e:
|
218 |
+
return f"Error during analysis: {str(e)}", [], None
|
219 |
+
|
220 |
+
def process_input(gif_file, start_date, end_date, ident, size, tool, lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode):
|
221 |
+
"""Process either uploaded GIF or fetched SDO images."""
|
222 |
+
if gif_file:
|
223 |
+
frames, error = extract_frames(gif_file.name)
|
224 |
+
if error:
|
225 |
+
return error, [], None
|
226 |
+
else:
|
227 |
+
frames, error = fetch_sdo_images(start_date, end_date, ident, size, tool)
|
228 |
+
if error:
|
229 |
+
return error, [], None
|
230 |
+
|
231 |
+
# Preview first frame if available
|
232 |
+
preview = Image.fromarray(frames[0]) if frames else None
|
233 |
+
|
234 |
+
# Analyze frames
|
235 |
+
report, results, gif_path = analyze_images(
|
236 |
+
frames, lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode
|
237 |
+
)
|
238 |
+
|
239 |
+
return report, results, gif_path, preview
|
240 |
+
|
241 |
+
# Gradio Blocks interface
|
242 |
+
with gr.Blocks(title="Solar CME Detection") as demo:
|
243 |
+
gr.Markdown("""
|
244 |
+
# Solar CME Detection
|
245 |
+
Upload a GIF or specify a date range to fetch SDO images and detect concentric circles indicative of coronal mass ejections (CMEs).
|
246 |
+
Green circles mark detected features; red circles highlight growing series (potential Earth-directed CMEs).
|
247 |
+
""")
|
248 |
+
|
249 |
+
with gr.Row():
|
250 |
+
with gr.Column():
|
251 |
+
gr.Markdown("### Input Options")
|
252 |
+
gif_input = gr.File(label="Upload Solar GIF (optional)", file_types=[".gif"])
|
253 |
+
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD HH:MM:SS)", value="2025-05-24 00:00:00")
|
254 |
+
end_date = gr.Textbox(label="End Date (YYYY-MM-DD HH:MM:SS)", value="2025-05-24 23:59:59")
|
255 |
+
ident = gr.Textbox(label="Image Identifier", value="0171")
|
256 |
+
size = gr.Textbox(label="Image Size", value="1024")
|
257 |
+
tool = gr.Textbox(label="Instrument", value="hmiigr")
|
258 |
+
|
259 |
+
gr.Markdown("### Analysis Parameters")
|
260 |
+
lower_bound = gr.Slider(minimum=0, maximum=255, value=low_int, step=1, label="Lower Intensity Bound (0-255)")
|
261 |
+
upper_bound = gr.Slider(minimum=0, maximum=255, value=high_int, step=1, label="Upper Intensity Bound (0-255)")
|
262 |
+
param1 = gr.Slider(minimum=10, maximum=200, value=edge_thresh, step=1, label="Hough Param1 (Edge Threshold)")
|
263 |
+
param2 = gr.Slider(minimum=1, maximum=50, value=accum_thresh, step=1, label="Hough Param2 (Accumulator Threshold)")
|
264 |
+
center_tolerance = gr.Slider(minimum=10, maximum=100, value=center_tol, step=1, label="Center Tolerance (Pixels)")
|
265 |
+
morph_iterations = gr.Slider(minimum=1, maximum=5, value=morph_dia, step=1, label="Morphological Dilation Iterations")
|
266 |
+
min_rad = gr.Slider(minimum=1, maximum=100, value=min_rad, step=1, label="Minimum Circle Radius")
|
267 |
+
display_mode = gr.Dropdown(
|
268 |
+
choices=["All Frames", "Detected Frames", "Both (Detected Replaces Original)"],
|
269 |
+
value="Detected Frames",
|
270 |
+
label="Display Mode"
|
271 |
+
)
|
272 |
+
|
273 |
+
analyze_button = gr.Button("Analyze")
|
274 |
+
|
275 |
+
with gr.Column():
|
276 |
+
gr.Markdown("### Outputs")
|
277 |
+
report = gr.Textbox(label="Analysis Report", lines=10)
|
278 |
+
preview = gr.Image(label="Input Preview (First Frame)")
|
279 |
+
gallery = gr.Gallery(label="Frames with Detected Circles (Green: Detected, Red: Growing Series)")
|
280 |
+
gif_output = gr.File(label="Download Resulting GIF")
|
281 |
+
|
282 |
+
analyze_button.click(
|
283 |
+
fn=process_input,
|
284 |
+
inputs=[
|
285 |
+
gif_input, start_date, end_date, ident, size, tool,
|
286 |
+
lower_bound, upper_bound, param1, param2, center_tolerance, morph_iterations, min_rad, display_mode
|
287 |
+
],
|
288 |
+
outputs=[report, gallery, gif_output, preview]
|
289 |
+
)
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
+
demo.launch()
|