Spaces:
Sleeping
Sleeping
File size: 10,001 Bytes
3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
// static/script.js
let scene, camera, renderer, controls;
let spheres = [];
let fluidParticles = [];
let simulationRunning = false;
const PARTICLE_COUNT = 5000;
const SPACE_SIZE = 40; // Increased space size for solar system scale
const FLUID_SPEED = 0.1;
let FLUID_FRICTION = 0.9; // Adjustable friction
let FLUID_DEFLECTION = 0.1; // Adjustable deflection
const GRAVITY_CONSTANT = 0.1; // Scaled gravitational constant
init();
animate();
function init() {
// Scene setup
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.position.set(0, 20, 40);
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth - 300, window.innerHeight);
document.getElementById('scene-container').appendChild(renderer.domElement);
controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.05;
// Add Sun
const sunGeometry = new THREE.SphereGeometry(1, 32, 32);
const sunMaterial = new THREE.MeshBasicMaterial({ color: 0xFFFF00 });
const sun = new THREE.Mesh(sunGeometry, sunMaterial);
sun.position.set(0, 0, 0);
sun.userData = { mass: 1.989e4, velocity: new THREE.Vector3(0, 0, 0) };
scene.add(sun);
spheres.push(sun);
// Add Earth
const earthGeometry = new THREE.SphereGeometry(0.3, 32, 32);
const earthMaterial = new THREE.MeshBasicMaterial({ color: 0x0000FF });
const earth = new THREE.Mesh(earthGeometry, earthMaterial);
earth.position.set(10, 0, 0);
earth.userData = {
mass: 5.972e-2,
velocity: new THREE.Vector3(0, 0, 0.0298), // Initial orbital velocity in Z direction
centripetalScale: 1
};
scene.add(earth);
spheres.push(earth);
// Add Mars
const marsGeometry = new THREE.SphereGeometry(0.25, 32, 32);
const marsMaterial = new THREE.MeshBasicMaterial({ color: 0xFF4500 });
const mars = new THREE.Mesh(marsGeometry, marsMaterial);
mars.position.set(15, 0, 0);
mars.userData = {
mass: 6.417e-3,
velocity: new THREE.Vector3(0, 0, 0.0241), // Initial orbital velocity in Z direction
centripetalScale: 1
};
scene.add(mars);
spheres.push(mars);
// Add fluid particles
const particleGeometry = new THREE.SphereGeometry(0.05, 8, 8);
const particleMaterial = new THREE.MeshBasicMaterial({ color: 0x00BFFF, transparent: true, opacity: 0.5 });
for (let i = 0; i < PARTICLE_COUNT; i++) {
const particle = new THREE.Mesh(particleGeometry, particleMaterial);
particle.position.set(
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE
);
particle.userData = {
velocity: new THREE.Vector3(
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED
)
};
scene.add(particle);
fluidParticles.push(particle);
}
// Add grid helper for reference
const gridHelper = new THREE.GridHelper(SPACE_SIZE, 20);
gridHelper.position.y = -SPACE_SIZE / 2;
scene.add(gridHelper);
// Event listeners for controls
document.getElementById('start-btn').addEventListener('click', () => {
simulationRunning = true;
updateParams();
});
document.getElementById('reset-btn').addEventListener('click', () => {
simulationRunning = false;
resetSimulation();
});
// Update sphere positions, masses, orbital velocities, centripetal force, and fluid interactions
['sun', 'earth', 'mars'].forEach(body => {
document.getElementById(`${body}-mass`).addEventListener('input', updateParams);
document.getElementById(`${body}-x`).addEventListener('input', updateParams);
document.getElementById(`${body}-y`).addEventListener('input', updateParams);
document.getElementById(`${body}-z`).addEventListener('input', updateParams);
if (body !== 'sun') {
document.getElementById(`${body}-orbital-velocity`).addEventListener('input', updateParams);
document.getElementById(`${body}-centripetal`).addEventListener('input', updateParams);
}
});
document.getElementById('fluid-friction').addEventListener('input', updateParams);
document.getElementById('fluid-deflection').addEventListener('input', updateParams);
// Handle window resize
window.addEventListener('resize', () => {
camera.aspect = (window.innerWidth - 300) / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth - 300, window.innerHeight);
});
}
function updateParams() {
// Update Sun
spheres[0].userData.mass = parseFloat(document.getElementById('sun-mass').value) * 1e4;
spheres[0].position.set(
parseFloat(document.getElementById('sun-x').value),
parseFloat(document.getElementById('sun-y').value),
parseFloat(document.getElementById('sun-z').value)
);
// Update Earth
spheres[1].userData.mass = parseFloat(document.getElementById('earth-mass').value) * 1e4;
spheres[1].position.set(
parseFloat(document.getElementById('earth-x').value),
parseFloat(document.getElementById('earth-y').value),
parseFloat(document.getElementById('earth-z').value)
);
const earthVelocity = parseFloat(document.getElementById('earth-orbital-velocity').value);
spheres[1].userData.velocity.set(0, 0, earthVelocity); // Update velocity in Z direction for orbit
spheres[1].userData.centripetalScale = parseFloat(document.getElementById('earth-centripetal').value);
// Update Mars
spheres[2].userData.mass = parseFloat(document.getElementById('mars-mass').value) * 1e4;
spheres[2].position.set(
parseFloat(document.getElementById('mars-x').value),
parseFloat(document.getElementById('mars-y').value),
parseFloat(document.getElementById('mars-z').value)
);
const marsVelocity = parseFloat(document.getElementById('mars-orbital-velocity').value);
spheres[2].userData.velocity.set(0, 0, marsVelocity); // Update velocity in Z direction for orbit
spheres[2].userData.centripetalScale = parseFloat(document.getElementById('mars-centripetal').value);
// Update fluid interaction parameters
FLUID_FRICTION = parseFloat(document.getElementById('fluid-friction').value);
FLUID_DEFLECTION = parseFloat(document.getElementById('fluid-deflection').value);
}
function resetSimulation() {
fluidParticles.forEach(particle => {
particle.position.set(
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE
);
particle.userData.velocity.set(
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED
);
});
// Reset positions and velocities for Earth and Mars
spheres[1].position.set(10, 0, 0);
spheres[1].userData.velocity.set(0, 0, 0.0298);
spheres[2].position.set(15, 0, 0);
spheres[2].userData.velocity.set(0, 0, 0.0241);
}
function animate() {
requestAnimationFrame(animate);
if (simulationRunning) {
// Update fluid particles
fluidParticles.forEach(particle => {
let position = particle.position;
let velocity = particle.userData.velocity;
// Check for interactions with spheres
spheres.forEach(sphere => {
let distance = position.distanceTo(sphere.position);
let sphereRadius = sphere.geometry.parameters.radius + 0.5; // Interaction radius
if (distance < sphereRadius) {
// Apply friction
velocity.multiplyScalar(FLUID_FRICTION);
// Apply gravitational deflection
let direction = sphere.position.clone().sub(position).normalize();
let forceMagnitude = (FLUID_DEFLECTION * sphere.userData.mass) / (distance * distance);
let force = direction.multiplyScalar(forceMagnitude);
velocity.add(force);
}
});
// Update position
position.add(velocity);
// Boundary conditions (wrap around)
if (Math.abs(position.x) > SPACE_SIZE / 2) position.x = -Math.sign(position.x) * SPACE_SIZE / 2;
if (Math.abs(position.y) > SPACE_SIZE / 2) position.y = -Math.sign(position.y) * SPACE_SIZE / 2;
if (Math.abs(position.z) > SPACE_SIZE / 2) position.z = -Math.sign(position.z) * SPACE_SIZE / 2;
});
// Update sphere positions (gravitational interaction and orbital dynamics)
spheres.forEach((sphere, i) => {
if (i === 0) return; // Sun is stationary
let acceleration = new THREE.Vector3();
spheres.forEach((otherSphere, j) => {
if (i !== j) {
let distance = sphere.position.distanceTo(otherSphere.position);
if (distance > 0.1) { // Avoid division by zero
let direction = otherSphere.position.clone().sub(sphere.position).normalize();
let force = (GRAVITY_CONSTANT * otherSphere.userData.mass) / (distance * distance);
acceleration.add(direction.multiplyScalar(force * sphere.userData.centripetalScale));
}
}
});
// Update velocity and position
sphere.userData.velocity.add(acceleration);
sphere.position.add(sphere.userData.velocity);
});
}
controls.update();
renderer.render(scene, camera);
} |