File size: 10,001 Bytes
3bd9648
 
 
 
 
 
 
9cb0542
3bd9648
9cb0542
 
 
3bd9648
 
 
 
 
 
 
 
9cb0542
3bd9648
 
 
 
 
 
 
 
 
9cb0542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd9648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb0542
 
 
 
 
 
 
 
 
 
3bd9648
 
9cb0542
 
 
3bd9648
 
 
 
 
 
 
 
 
9cb0542
 
3bd9648
9cb0542
 
 
3bd9648
 
9cb0542
 
3bd9648
9cb0542
 
 
3bd9648
9cb0542
 
 
3bd9648
9cb0542
 
3bd9648
9cb0542
 
 
3bd9648
9cb0542
 
 
 
 
 
 
3bd9648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb0542
 
 
 
 
 
3bd9648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb0542
3bd9648
 
 
9cb0542
3bd9648
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb0542
3bd9648
9cb0542
 
3bd9648
 
 
 
 
 
 
9cb0542
3bd9648
 
 
9cb0542
 
 
 
3bd9648
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// static/script.js
let scene, camera, renderer, controls;
let spheres = [];
let fluidParticles = [];
let simulationRunning = false;

const PARTICLE_COUNT = 5000;
const SPACE_SIZE = 40; // Increased space size for solar system scale
const FLUID_SPEED = 0.1;
let FLUID_FRICTION = 0.9; // Adjustable friction
let FLUID_DEFLECTION = 0.1; // Adjustable deflection
const GRAVITY_CONSTANT = 0.1; // Scaled gravitational constant

init();
animate();

function init() {
    // Scene setup
    scene = new THREE.Scene();
    camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
    camera.position.set(0, 20, 40);

    renderer = new THREE.WebGLRenderer({ antialias: true });
    renderer.setSize(window.innerWidth - 300, window.innerHeight);
    document.getElementById('scene-container').appendChild(renderer.domElement);

    controls = new THREE.OrbitControls(camera, renderer.domElement);
    controls.enableDamping = true;
    controls.dampingFactor = 0.05;

    // Add Sun
    const sunGeometry = new THREE.SphereGeometry(1, 32, 32);
    const sunMaterial = new THREE.MeshBasicMaterial({ color: 0xFFFF00 });
    const sun = new THREE.Mesh(sunGeometry, sunMaterial);
    sun.position.set(0, 0, 0);
    sun.userData = { mass: 1.989e4, velocity: new THREE.Vector3(0, 0, 0) };
    scene.add(sun);
    spheres.push(sun);

    // Add Earth
    const earthGeometry = new THREE.SphereGeometry(0.3, 32, 32);
    const earthMaterial = new THREE.MeshBasicMaterial({ color: 0x0000FF });
    const earth = new THREE.Mesh(earthGeometry, earthMaterial);
    earth.position.set(10, 0, 0);
    earth.userData = { 
        mass: 5.972e-2, 
        velocity: new THREE.Vector3(0, 0, 0.0298), // Initial orbital velocity in Z direction
        centripetalScale: 1 
    };
    scene.add(earth);
    spheres.push(earth);

    // Add Mars
    const marsGeometry = new THREE.SphereGeometry(0.25, 32, 32);
    const marsMaterial = new THREE.MeshBasicMaterial({ color: 0xFF4500 });
    const mars = new THREE.Mesh(marsGeometry, marsMaterial);
    mars.position.set(15, 0, 0);
    mars.userData = { 
        mass: 6.417e-3, 
        velocity: new THREE.Vector3(0, 0, 0.0241), // Initial orbital velocity in Z direction
        centripetalScale: 1 
    };
    scene.add(mars);
    spheres.push(mars);

    // Add fluid particles
    const particleGeometry = new THREE.SphereGeometry(0.05, 8, 8);
    const particleMaterial = new THREE.MeshBasicMaterial({ color: 0x00BFFF, transparent: true, opacity: 0.5 });
    for (let i = 0; i < PARTICLE_COUNT; i++) {
        const particle = new THREE.Mesh(particleGeometry, particleMaterial);
        particle.position.set(
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE
        );
        particle.userData = {
            velocity: new THREE.Vector3(
                (Math.random() - 0.5) * FLUID_SPEED,
                (Math.random() - 0.5) * FLUID_SPEED,
                (Math.random() - 0.5) * FLUID_SPEED
            )
        };
        scene.add(particle);
        fluidParticles.push(particle);
    }

    // Add grid helper for reference
    const gridHelper = new THREE.GridHelper(SPACE_SIZE, 20);
    gridHelper.position.y = -SPACE_SIZE / 2;
    scene.add(gridHelper);

    // Event listeners for controls
    document.getElementById('start-btn').addEventListener('click', () => {
        simulationRunning = true;
        updateParams();
    });

    document.getElementById('reset-btn').addEventListener('click', () => {
        simulationRunning = false;
        resetSimulation();
    });

    // Update sphere positions, masses, orbital velocities, centripetal force, and fluid interactions
    ['sun', 'earth', 'mars'].forEach(body => {
        document.getElementById(`${body}-mass`).addEventListener('input', updateParams);
        document.getElementById(`${body}-x`).addEventListener('input', updateParams);
        document.getElementById(`${body}-y`).addEventListener('input', updateParams);
        document.getElementById(`${body}-z`).addEventListener('input', updateParams);
        if (body !== 'sun') {
            document.getElementById(`${body}-orbital-velocity`).addEventListener('input', updateParams);
            document.getElementById(`${body}-centripetal`).addEventListener('input', updateParams);
        }
    });

    document.getElementById('fluid-friction').addEventListener('input', updateParams);
    document.getElementById('fluid-deflection').addEventListener('input', updateParams);

    // Handle window resize
    window.addEventListener('resize', () => {
        camera.aspect = (window.innerWidth - 300) / window.innerHeight;
        camera.updateProjectionMatrix();
        renderer.setSize(window.innerWidth - 300, window.innerHeight);
    });
}

function updateParams() {
    // Update Sun
    spheres[0].userData.mass = parseFloat(document.getElementById('sun-mass').value) * 1e4;
    spheres[0].position.set(
        parseFloat(document.getElementById('sun-x').value),
        parseFloat(document.getElementById('sun-y').value),
        parseFloat(document.getElementById('sun-z').value)
    );

    // Update Earth
    spheres[1].userData.mass = parseFloat(document.getElementById('earth-mass').value) * 1e4;
    spheres[1].position.set(
        parseFloat(document.getElementById('earth-x').value),
        parseFloat(document.getElementById('earth-y').value),
        parseFloat(document.getElementById('earth-z').value)
    );
    const earthVelocity = parseFloat(document.getElementById('earth-orbital-velocity').value);
    spheres[1].userData.velocity.set(0, 0, earthVelocity); // Update velocity in Z direction for orbit
    spheres[1].userData.centripetalScale = parseFloat(document.getElementById('earth-centripetal').value);

    // Update Mars
    spheres[2].userData.mass = parseFloat(document.getElementById('mars-mass').value) * 1e4;
    spheres[2].position.set(
        parseFloat(document.getElementById('mars-x').value),
        parseFloat(document.getElementById('mars-y').value),
        parseFloat(document.getElementById('mars-z').value)
    );
    const marsVelocity = parseFloat(document.getElementById('mars-orbital-velocity').value);
    spheres[2].userData.velocity.set(0, 0, marsVelocity); // Update velocity in Z direction for orbit
    spheres[2].userData.centripetalScale = parseFloat(document.getElementById('mars-centripetal').value);

    // Update fluid interaction parameters
    FLUID_FRICTION = parseFloat(document.getElementById('fluid-friction').value);
    FLUID_DEFLECTION = parseFloat(document.getElementById('fluid-deflection').value);
}

function resetSimulation() {
    fluidParticles.forEach(particle => {
        particle.position.set(
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE
        );
        particle.userData.velocity.set(
            (Math.random() - 0.5) * FLUID_SPEED,
            (Math.random() - 0.5) * FLUID_SPEED,
            (Math.random() - 0.5) * FLUID_SPEED
        );
    });

    // Reset positions and velocities for Earth and Mars
    spheres[1].position.set(10, 0, 0);
    spheres[1].userData.velocity.set(0, 0, 0.0298);
    spheres[2].position.set(15, 0, 0);
    spheres[2].userData.velocity.set(0, 0, 0.0241);
}

function animate() {
    requestAnimationFrame(animate);

    if (simulationRunning) {
        // Update fluid particles
        fluidParticles.forEach(particle => {
            let position = particle.position;
            let velocity = particle.userData.velocity;

            // Check for interactions with spheres
            spheres.forEach(sphere => {
                let distance = position.distanceTo(sphere.position);
                let sphereRadius = sphere.geometry.parameters.radius + 0.5; // Interaction radius

                if (distance < sphereRadius) {
                    // Apply friction
                    velocity.multiplyScalar(FLUID_FRICTION);

                    // Apply gravitational deflection
                    let direction = sphere.position.clone().sub(position).normalize();
                    let forceMagnitude = (FLUID_DEFLECTION * sphere.userData.mass) / (distance * distance);
                    let force = direction.multiplyScalar(forceMagnitude);
                    velocity.add(force);
                }
            });

            // Update position
            position.add(velocity);

            // Boundary conditions (wrap around)
            if (Math.abs(position.x) > SPACE_SIZE / 2) position.x = -Math.sign(position.x) * SPACE_SIZE / 2;
            if (Math.abs(position.y) > SPACE_SIZE / 2) position.y = -Math.sign(position.y) * SPACE_SIZE / 2;
            if (Math.abs(position.z) > SPACE_SIZE / 2) position.z = -Math.sign(position.z) * SPACE_SIZE / 2;
        });

        // Update sphere positions (gravitational interaction and orbital dynamics)
        spheres.forEach((sphere, i) => {
            if (i === 0) return; // Sun is stationary

            let acceleration = new THREE.Vector3();
            spheres.forEach((otherSphere, j) => {
                if (i !== j) {
                    let distance = sphere.position.distanceTo(otherSphere.position);
                    if (distance > 0.1) { // Avoid division by zero
                        let direction = otherSphere.position.clone().sub(sphere.position).normalize();
                        let force = (GRAVITY_CONSTANT * otherSphere.userData.mass) / (distance * distance);
                        acceleration.add(direction.multiplyScalar(force * sphere.userData.centripetalScale));
                    }
                }
            });

            // Update velocity and position
            sphere.userData.velocity.add(acceleration);
            sphere.position.add(sphere.userData.velocity);
        });
    }

    controls.update();
    renderer.render(scene, camera);
}