Spaces:
Sleeping
Sleeping
File size: 27,681 Bytes
c291038 2ae0bde 2386211 2ae0bde c291038 2ae0bde 676e5d8 2ae0bde 676e5d8 2ae0bde 2386211 2ae0bde 2386211 2ae0bde 2386211 2ae0bde 2386211 2ae0bde 2386211 2ae0bde 2386211 2ae0bde 2386211 2ae0bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import os
import io
import requests
import logging
import re
import json
import base64
from flask import Flask, request, render_template, jsonify, send_file, Response
from PyPDF2 import PdfReader, PdfWriter
import pytesseract
from pdf2image import convert_from_bytes
from PIL import Image
from datasets import Dataset, load_dataset
from sentence_transformers import SentenceTransformer
from datetime import datetime
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import HfApi, hf_hub_download
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
import chromadb
from chromadb.utils import embedding_functions
import shutil
# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Set cache, uploads, and output directories
os.environ["HF_HOME"] = "/app/cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/app/cache"
os.environ["XDG_CACHE_HOME"] = "/app/cache"
UPLOADS_DIR = "/app/uploads"
PAGES_DIR = os.path.join(UPLOADS_DIR, "pages")
OUTPUT_DIR = "/app/output"
COMBINED_PDF_PATH = os.path.join(OUTPUT_DIR, "combined_output.pdf")
PROGRESS_JSON_PATH = os.path.join(OUTPUT_DIR, "progress_log.json")
CHROMA_DB_PATH = os.path.join(OUTPUT_DIR, "chromadb")
os.makedirs(PAGES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
app = Flask(__name__)
# Hugging Face Hub configuration
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO = "broadfield-dev/pdf-ocr-dataset"
HF_API = HfApi()
# Tracking file for resuming
TRACKING_FILE = "/app/cache/processing_state.json"
# Load sentence transformer
try:
embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="/app/cache")
logger.info("SentenceTransformer loaded successfully")
except Exception as e:
logger.error(f"Failed to load SentenceTransformer: {e}")
# Initialize TrOCR (CPU-only)
try:
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
trocr_model.to("cpu").eval()
logger.info("TrOCR initialized successfully on CPU")
except Exception as e:
logger.error(f"Failed to initialize TrOCR: {e}")
trocr_model = None
trocr_processor = None
# Initialize ChromaDB
chroma_client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
chroma_collection = chroma_client.get_or_create_collection(name="pdf_pages", embedding_function=sentence_transformer_ef)
# Load or initialize progress log
def load_progress_log(storage_mode):
if storage_mode == "hf":
try:
progress_file = hf_hub_download(repo_id=HF_DATASET_REPO, filename="progress_log.json", repo_type="dataset", token=HF_TOKEN)
with open(progress_file, "r") as f:
return json.load(f)
except Exception as e:
logger.info(f"No HF progress log found or error loading: {e}, initializing new log")
return {"urls": {}}
else: # local
if os.path.exists(PROGRESS_JSON_PATH):
with open(PROGRESS_JSON_PATH, "r") as f:
return json.load(f)
return {"urls": {}}
def save_progress_log(progress_log, storage_mode):
if storage_mode == "hf":
with open("/app/cache/progress_log.json", "w") as f:
json.dump(progress_log, f)
HF_API.upload_file(
path_or_fileobj="/app/cache/progress_log.json",
path_in_repo="progress_log.json",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
logger.info("Progress log updated in Hugging Face dataset")
else: # local
with open(PROGRESS_JSON_PATH, "w") as f:
json.dump(progress_log, f)
logger.info("Progress log updated locally")
# Tesseract OCR with bounding boxes
def ocr_with_tesseract(pdf_bytes, page_num):
try:
images = convert_from_bytes(pdf_bytes, first_page=page_num+1, last_page=page_num+1)
if not images:
logger.info(f"Page {page_num + 1} is blank")
return {"page_num": page_num + 1, "text": "Blank page", "words": []}
image = images[0]
data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
text = pytesseract.image_to_string(image)
words = [
{"text": data["text"][i], "left": data["left"][i], "top": data["top"][i], "width": data["width"][i], "height": data["height"][i]}
for i in range(len(data["text"])) if data["text"][i].strip()
]
logger.info(f"Tesseract processed page {page_num + 1} with {len(words)} words")
return {"page_num": page_num + 1, "text": text, "words": words}
except Exception as e:
logger.error(f"Tesseract error on page {page_num + 1}: {e}")
return {"page_num": page_num + 1, "text": f"Tesseract Error: {str(e)}", "words": []}
# TrOCR OCR
def ocr_with_trocr(pdf_bytes, page_num):
if not trocr_model or not trocr_processor:
logger.warning(f"TrOCR not available for page {page_num + 1}")
return {"page_num": page_num + 1, "text": "TrOCR not initialized", "words": []}
try:
images = convert_from_bytes(pdf_bytes, first_page=page_num+1, last_page=page_num+1)
if not images:
logger.info(f"Page {page_num + 1} is blank")
return {"page_num": page_num + 1, "text": "Blank page", "words": []}
image = images[0].convert("RGB")
pixel_values = trocr_processor(image, return_tensors="pt").pixel_values.to("cpu")
with torch.no_grad():
generated_ids = trocr_model.generate(pixel_values, max_length=50)
text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
words = [{"text": word, "left": 0, "top": 0, "width": 0, "height": 0} for word in text.split()]
logger.info(f"TrOCR processed page {page_num + 1} with text: {text}")
return {"page_num": page_num + 1, "text": text, "words": words}
except Exception as e:
logger.error(f"TrOCR error on page {page_num + 1}: {e}")
return {"page_num": page_num + 1, "text": f"TrOCR Error: {str(e)}", "words": []}
# Map Tesseract bounding boxes to OCR text
def map_tesseract_to_ocr(tesseract_result, ocr_result):
if not tesseract_result["words"] or "Error" in ocr_result["text"]:
logger.info(f"Mapping skipped for page {tesseract_result['page_num']}: No Tesseract words or OCR error")
return {**ocr_result, "words": tesseract_result["words"]}
ocr_text = ocr_result["text"]
tesseract_words = tesseract_result["words"]
sentences = re.split(r'(?<=[.!?])\s+', ocr_text.strip())
sentence_embeddings = embedder.encode(sentences)
mapped_words = []
for word in tesseract_words:
word_embedding = embedder.encode(word["text"])
similarities = [
dot(word_embedding, sent_emb) / (norm(word_embedding) * norm(sent_emb)) if norm(sent_emb) != 0 else 0
for sent_emb in sentence_embeddings
]
best_match_idx = similarities.index(max(similarities))
best_sentence = sentences[best_match_idx]
if word["text"].lower() in best_sentence.lower():
mapped_words.append(word)
else:
mapped_words.append(word)
logger.info(f"Mapped {len(mapped_words)} words for page {tesseract_result['page_num']}")
return {**ocr_result, "words": mapped_words}
# Update combined PDF
def update_combined_pdf(pdf_bytes, page_num):
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
page = pdf_reader.pages[page_num]
writer = PdfWriter()
if os.path.exists(COMBINED_PDF_PATH):
existing_pdf = PdfReader(COMBINED_PDF_PATH)
for p in existing_pdf.pages:
writer.add_page(p)
writer.add_page(page)
with open(COMBINED_PDF_PATH, "wb") as f:
writer.write(f)
logger.info(f"Updated combined PDF with page {page_num + 1}")
# Process page
def process_page(pdf_bytes, page_num, ocr_backend, filename, tracking_state, storage_mode):
tesseract_result = ocr_with_tesseract(pdf_bytes, page_num)
ocr_result = ocr_with_trocr(pdf_bytes, page_num) if ocr_backend == "trocr" else ocr_with_tesseract(pdf_bytes, page_num)
combined_result = map_tesseract_to_ocr(tesseract_result, ocr_result)
local_page_path = os.path.join(PAGES_DIR, f"{filename}_page_{combined_result['page_num']}_{datetime.now().strftime('%Y%m%d%H%M%S')}.pdf")
writer = PdfWriter()
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
writer.add_page(pdf_reader.pages[page_num])
with open(local_page_path, "wb") as f:
writer.write(f)
if storage_mode == "hf":
remote_page_path = f"pages/{os.path.basename(local_page_path)}"
HF_API.upload_file(
path_or_fileobj=local_page_path,
path_in_repo=remote_page_path,
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
logger.info(f"Uploaded page to {HF_DATASET_REPO}/{remote_page_path}")
combined_result["page_file"] = remote_page_path
else: # local
update_combined_pdf(pdf_bytes, page_num)
combined_result["page_file"] = local_page_path
combined_result["pdf_page"] = tracking_state["last_offset"] + page_num
# Update ChromaDB
chroma_collection.add(
documents=[combined_result["text"]],
metadatas=[{"filename": filename, "page_num": combined_result["page_num"], "page_file": combined_result["page_file"], "words": json.dumps(combined_result["words"])}],
ids=[f"{filename}_page_{combined_result['page_num']}"]
)
logger.info(f"Added page {combined_result['page_num']} to ChromaDB")
return combined_result
# Extract PDF URLs from text
def extract_pdf_urls(text):
url_pattern = r'(https?://[^\s]+?\.pdf)'
return re.findall(url_pattern, text)
# Load or initialize tracking state
def load_tracking_state():
if os.path.exists(TRACKING_FILE):
with open(TRACKING_FILE, "r") as f:
return json.load(f)
return {"processed_urls": {}, "last_offset": 0}
def save_tracking_state(state):
with open(TRACKING_FILE, "w") as f:
json.dump(state, f)
# Push to Hugging Face Dataset
def push_to_hf_dataset(new_data):
try:
for item in new_data:
if "url" not in item or not isinstance(item["url"], str):
logger.error(f"Invalid item in new_data: {item}")
raise ValueError(f"Each item must have a valid 'url' key; found {item}")
try:
dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")
existing_data = dataset["train"].to_dict()
logger.info(f"Loaded existing dataset with keys: {list(existing_data.keys())}")
except Exception as e:
logger.info(f"No existing dataset found or error loading: {e}, initializing new dataset")
existing_data = {"filename": [], "pages": [], "url": [], "embedding": [], "processed_at": [], "pdf_page_offset": []}
required_keys = ["filename", "pages", "url", "embedding", "processed_at", "pdf_page_offset"]
for key in required_keys:
if key not in existing_data:
existing_data[key] = []
logger.warning(f"Initialized missing key '{key}' in existing_data")
existing_urls = set(existing_data["url"])
for item in new_data:
logger.debug(f"Processing item: {item}")
if item["url"] not in existing_urls:
for key in required_keys:
existing_data[key].append(item.get(key, None))
existing_urls.add(item["url"])
logger.info(f"Added new URL: {item['url']}")
else:
idx = existing_data["url"].index(item["url"])
existing_data["pages"][idx].extend(item["pages"])
existing_data["embedding"][idx] = item["embedding"]
existing_data["processed_at"][idx] = item["processed_at"]
logger.info(f"Updated existing URL: {item['url']}")
updated_dataset = Dataset.from_dict(existing_data)
updated_dataset.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
logger.info(f"Successfully appended/updated {len(new_data)} records to {HF_DATASET_REPO}")
except Exception as e:
logger.error(f"Failed to push to HF Dataset: {str(e)}")
raise
# Check if URL is fully processed
def is_url_fully_processed(url, progress_log, total_pages):
return url in progress_log["urls"] and progress_log["urls"][url]["status"] == "completed" and progress_log["urls"][url]["processed_pages"] >= total_pages
# Process PDF URL with SSE
def process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
filename = url.split("/")[-1]
try:
yield f"data: {json.dumps({'status': 'fetching', 'filename': filename})}\n\n"
logger.info(f"Fetching PDF from {url}")
response = requests.get(url, timeout=10)
response.raise_for_status()
pdf_bytes = response.content
pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
total_pages = len(pdf_reader.pages)
progress_log["urls"].setdefault(url, {"status": "pending", "processed_pages": 0})
start_page = progress_log["urls"][url]["processed_pages"]
if is_url_fully_processed(url, progress_log, total_pages):
yield f"data: {json.dumps({'status': 'skipped', 'filename': filename, 'message': 'URL already fully processed'})}\n\n"
return
pages = []
for page_num in range(start_page, total_pages):
yield f"data: {json.dumps({'status': 'processing', 'filename': filename, 'page_num': page_num + 1, 'total_pages': total_pages})}\n\n"
page = process_page(pdf_bytes, page_num, ocr_backend, filename, tracking_state, storage_mode)
pages.append(page)
yield f"data: {json.dumps({'filename': filename, 'page': page})}\n\n"
progress_log["urls"][url]["processed_pages"] = page_num + 1
save_progress_log(progress_log, storage_mode)
full_text = "\n\n".join(f"Page {page['page_num']}\n{page['text']}" for page in pages)
embedding = embedder.encode(full_text).tolist() if full_text.strip() else None
result = {
"filename": filename,
"pages": pages,
"url": url,
"embedding": embedding,
"processed_at": datetime.now().isoformat(),
"pdf_page_offset": tracking_state["last_offset"]
}
if storage_mode == "hf":
push_to_hf_dataset([result])
tracking_state["last_offset"] += total_pages - start_page
progress_log["urls"][url]["status"] = "completed"
save_tracking_state(tracking_state)
save_progress_log(progress_log, storage_mode)
yield f"data: {json.dumps({'status': 'completed', 'filename': filename, 'new_offset': tracking_state['last_offset']})}\n\n"
logger.info(f"Completed processing {filename} with new offset {tracking_state['last_offset']}")
except requests.RequestException as e:
logger.error(f"Failed to fetch PDF from {url}: {e}")
yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error fetching PDF: {str(e)}'})}\n\n"
except Exception as e:
logger.error(f"Error processing {url}: {e}")
yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error: {str(e)}'})}\n\n"
# Process text content with SSE
def process_text_content(text, filename, ocr_backend, tracking_state, progress_log, storage_mode):
try:
pdf_urls = extract_pdf_urls(text)
processed_urls = [url for url in pdf_urls if url in progress_log["urls"] and progress_log["urls"][url]["status"] == "completed"]
new_urls = [url for url in pdf_urls if url not in progress_log["urls"] or progress_log["urls"][url]["status"] != "completed"]
initial_text = (f"Found {len(pdf_urls)} PDF URLs:\n" +
f"Already processed: {len(processed_urls)}\n" + "\n".join(processed_urls) + "\n" +
f"To process: {len(new_urls)}\n" + "\n".join(new_urls) + "\n\nProcessing...")
yield f"data: {json.dumps({'status': 'info', 'filename': filename, 'message': initial_text})}\n\n"
for url in new_urls:
logger.info(f"Starting processing of {url} with offset {tracking_state['last_offset']}")
for event in process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
yield event
except Exception as e:
logger.error(f"Error processing text content for {filename}: {e}")
yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error: {str(e)}'})}\n\n"
# Home route
@app.route("/", methods=["GET"])
def index():
return render_template("index.html")
# Process URL endpoint with GET
@app.route("/process_url", methods=["GET"])
def process_url():
url = request.args.get("url")
ocr_backend = request.args.get("ocr_backend", "trocr")
storage_mode = request.args.get("storage_mode", "hf")
if not url:
return jsonify({"error": "No URL provided"}), 400
tracking_state = load_tracking_state()
progress_log = load_progress_log(storage_mode)
def generate():
logger.info(f"Processing URL: {url} with ocr_backend={ocr_backend}, storage_mode={storage_mode}, starting offset={tracking_state['last_offset']}")
if url.endswith(".pdf"):
for event in process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
yield event
elif url.endswith(".txt"):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
text = response.text
filename = url.split("/")[-1]
logger.info(f"Fetched text from {url}")
for event in process_text_content(text, filename, ocr_backend, tracking_state, progress_log, storage_mode):
yield event
except requests.RequestException as e:
logger.error(f"Failed to fetch text from {url}: {e}")
yield f"data: {json.dumps({'status': 'error', 'filename': url, 'message': f'Error fetching URL: {str(e)}'})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'filename': url, 'message': 'Unsupported URL format. Must end in .pdf or .txt'})}\n\n"
logger.info(f"Finished processing URL: {url}")
return Response(generate(), mimetype="text/event-stream")
# Search page
@app.route("/search", methods=["GET"])
def search_page():
storage_mode = request.args.get("storage_mode", "hf")
if storage_mode == "hf":
try:
dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")["train"]
files = [{"filename": f, "url": u, "pages": p} for f, u, p in zip(dataset["filename"], dataset["url"], dataset["pages"])]
return render_template("search.html", files=files, storage_mode=storage_mode)
except Exception as e:
logger.error(f"Error loading search page: {e}")
return render_template("search.html", files=[], error=str(e), storage_mode=storage_mode)
else: # local
files = []
results = chroma_collection.get()
for i, metadata in enumerate(results["metadatas"]):
files.append({
"filename": metadata["filename"],
"url": "",
"pages": [{"page_num": metadata["page_num"], "text": results["documents"][i], "page_file": metadata["page_file"], "words": json.loads(metadata["words"])}]
})
return render_template("search.html", files=files, storage_mode=storage_mode)
# Semantic search route
@app.route("/search_documents", methods=["POST"])
def search_documents():
query = request.form.get("query")
storage_mode = request.form.get("storage_mode", "hf")
if not query:
return jsonify({"error": "No query provided"}), 400
if storage_mode == "hf":
try:
dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")["train"]
query_embedding = embedder.encode(query).tolist()
embeddings = [e for e in dataset["embedding"] if e is not None]
documents = dataset["pages"]
filenames = dataset["filename"]
urls = dataset["url"]
processed_ats = dataset["processed_at"]
pdf_page_offsets = dataset["pdf_page_offset"]
similarities = [
dot(query_embedding, emb) / (norm(query_embedding) * norm(emb)) if norm(emb) != 0 else 0
for emb in embeddings
]
sorted_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:5]
results = []
for idx, i in enumerate(sorted_indices):
pages = documents[i]
highlighted_pages = []
for page in pages:
words = page["words"]
text = page["text"]
pdf_page_num = page["pdf_page"]
page_file = page["page_file"]
page_url = f"https://huggingface.co/datasets/{HF_DATASET_REPO}/resolve/main/{page_file}"
response = requests.get(page_url)
response.raise_for_status()
pdf_bytes = response.content
pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8')
sentences = re.split(r'(?<=[.!?])\s+', text)
highlights = []
for sent_idx, sentence in enumerate(sentences):
sent_embedding = embedder.encode(sentence).tolist()
similarity = dot(query_embedding, sent_embedding) / (norm(query_embedding) * norm(sent_embedding)) if norm(sent_embedding) != 0 else 0
if similarity > 0.7:
matching_words = []
sent_words = sentence.split()
word_idx = 0
for word in words:
if word_idx < len(sent_words) and word["text"].lower() in sent_words[word_idx].lower():
matching_words.append(word)
word_idx += 1
highlights.append({"sentence": sentence, "index": sent_idx, "words": matching_words})
highlighted_pages.append({
"page_num": page["page_num"],
"text": text,
"highlights": highlights,
"pdf_page": pdf_page_num,
"pdf_data": pdf_base64,
"page_url": page_url
})
results.append({
"filename": filenames[i],
"pages": highlighted_pages,
"url": urls[i],
"processed_at": processed_ats[i],
"similarity": similarities[i],
"pdf_page_offset": pdf_page_offsets[i]
})
return jsonify({"results": results})
except Exception as e:
logger.error(f"Search error: {e}")
return jsonify({"error": str(e)}), 500
else: # local with ChromaDB
try:
query_results = chroma_collection.query(query_texts=[query], n_results=5)
results = []
for i, doc in enumerate(query_results["documents"][0]):
metadata = query_results["metadatas"][0][i]
words = json.loads(metadata["words"])
text = doc
sentences = re.split(r'(?<=[.!?])\s+', text)
highlights = []
query_embedding = embedder.encode(query).tolist()
for sent_idx, sentence in enumerate(sentences):
sent_embedding = embedder.encode(sentence).tolist()
similarity = dot(query_embedding, sent_embedding) / (norm(query_embedding) * norm(sent_embedding)) if norm(sent_embedding) != 0 else 0
if similarity > 0.7:
matching_words = []
sent_words = sentence.split()
word_idx = 0
for word in words:
if word_idx < len(sent_words) and word["text"].lower() in sent_words[word_idx].lower():
matching_words.append(word)
word_idx += 1
highlights.append({"sentence": sentence, "index": sent_idx, "words": matching_words})
with open(metadata["page_file"], "rb") as f:
pdf_bytes = f.read()
pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8')
results.append({
"filename": metadata["filename"],
"pages": [{
"page_num": metadata["page_num"],
"text": text,
"highlights": highlights,
"pdf_page": metadata["page_num"],
"pdf_data": pdf_base64,
"page_url": metadata["page_file"]
}],
"url": "",
"processed_at": datetime.now().isoformat(),
"similarity": query_results["distances"][0][i]
})
return jsonify({"results": results})
except Exception as e:
logger.error(f"ChromaDB search error: {e}")
return jsonify({"error": str(e)}), 500
# Download output folder
@app.route("/download_output", methods=["GET"])
def download_output():
try:
zip_path = "/app/output.zip"
shutil.make_archive("/app/output", "zip", OUTPUT_DIR)
return send_file(zip_path, download_name="output.zip", as_attachment=True, mimetype="application/zip")
except Exception as e:
logger.error(f"Error creating zip: {e}")
return jsonify({"error": str(e)}), 500
# Preview output contents
@app.route("/preview_output", methods=["GET"])
def preview_output():
try:
combined_pdf_base64 = ""
if os.path.exists(COMBINED_PDF_PATH):
with open(COMBINED_PDF_PATH, "rb") as f:
combined_pdf_base64 = base64.b64encode(f.read()).decode('utf-8')
progress_json = {}
if os.path.exists(PROGRESS_JSON_PATH):
with open(PROGRESS_JSON_PATH, "r") as f:
progress_json = json.load(f)
return jsonify({
"combined_pdf": combined_pdf_base64,
"progress_json": progress_json
})
except Exception as e:
logger.error(f"Error previewing output: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port, debug=True) |