File size: 27,681 Bytes
c291038
2ae0bde
 
 
 
2386211
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c291038
 
 
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
676e5d8
2ae0bde
676e5d8
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386211
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386211
2ae0bde
 
 
 
 
 
2386211
2ae0bde
 
 
2386211
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386211
2ae0bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386211
2ae0bde
 
2386211
2ae0bde
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import os
import io
import requests
import logging
import re
import json
import base64
from flask import Flask, request, render_template, jsonify, send_file, Response
from PyPDF2 import PdfReader, PdfWriter
import pytesseract
from pdf2image import convert_from_bytes
from PIL import Image
from datasets import Dataset, load_dataset
from sentence_transformers import SentenceTransformer
from datetime import datetime
from numpy import dot
from numpy.linalg import norm
from huggingface_hub import HfApi, hf_hub_download
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import torch
import chromadb
from chromadb.utils import embedding_functions
import shutil

# Set up logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Set cache, uploads, and output directories
os.environ["HF_HOME"] = "/app/cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/app/cache"
os.environ["XDG_CACHE_HOME"] = "/app/cache"
UPLOADS_DIR = "/app/uploads"
PAGES_DIR = os.path.join(UPLOADS_DIR, "pages")
OUTPUT_DIR = "/app/output"
COMBINED_PDF_PATH = os.path.join(OUTPUT_DIR, "combined_output.pdf")
PROGRESS_JSON_PATH = os.path.join(OUTPUT_DIR, "progress_log.json")
CHROMA_DB_PATH = os.path.join(OUTPUT_DIR, "chromadb")
os.makedirs(PAGES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)

app = Flask(__name__)

# Hugging Face Hub configuration
HF_TOKEN = os.getenv("HF_TOKEN")
HF_DATASET_REPO = "broadfield-dev/pdf-ocr-dataset"
HF_API = HfApi()

# Tracking file for resuming
TRACKING_FILE = "/app/cache/processing_state.json"

# Load sentence transformer
try:
    embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="/app/cache")
    logger.info("SentenceTransformer loaded successfully")
except Exception as e:
    logger.error(f"Failed to load SentenceTransformer: {e}")

# Initialize TrOCR (CPU-only)
try:
    trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
    trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
    trocr_model.to("cpu").eval()
    logger.info("TrOCR initialized successfully on CPU")
except Exception as e:
    logger.error(f"Failed to initialize TrOCR: {e}")
    trocr_model = None
    trocr_processor = None

# Initialize ChromaDB
chroma_client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
chroma_collection = chroma_client.get_or_create_collection(name="pdf_pages", embedding_function=sentence_transformer_ef)

# Load or initialize progress log
def load_progress_log(storage_mode):
    if storage_mode == "hf":
        try:
            progress_file = hf_hub_download(repo_id=HF_DATASET_REPO, filename="progress_log.json", repo_type="dataset", token=HF_TOKEN)
            with open(progress_file, "r") as f:
                return json.load(f)
        except Exception as e:
            logger.info(f"No HF progress log found or error loading: {e}, initializing new log")
            return {"urls": {}}
    else:  # local
        if os.path.exists(PROGRESS_JSON_PATH):
            with open(PROGRESS_JSON_PATH, "r") as f:
                return json.load(f)
        return {"urls": {}}

def save_progress_log(progress_log, storage_mode):
    if storage_mode == "hf":
        with open("/app/cache/progress_log.json", "w") as f:
            json.dump(progress_log, f)
        HF_API.upload_file(
            path_or_fileobj="/app/cache/progress_log.json",
            path_in_repo="progress_log.json",
            repo_id=HF_DATASET_REPO,
            repo_type="dataset",
            token=HF_TOKEN
        )
        logger.info("Progress log updated in Hugging Face dataset")
    else:  # local
        with open(PROGRESS_JSON_PATH, "w") as f:
            json.dump(progress_log, f)
        logger.info("Progress log updated locally")

# Tesseract OCR with bounding boxes
def ocr_with_tesseract(pdf_bytes, page_num):
    try:
        images = convert_from_bytes(pdf_bytes, first_page=page_num+1, last_page=page_num+1)
        if not images:
            logger.info(f"Page {page_num + 1} is blank")
            return {"page_num": page_num + 1, "text": "Blank page", "words": []}
        image = images[0]
        data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
        text = pytesseract.image_to_string(image)
        words = [
            {"text": data["text"][i], "left": data["left"][i], "top": data["top"][i], "width": data["width"][i], "height": data["height"][i]}
            for i in range(len(data["text"])) if data["text"][i].strip()
        ]
        logger.info(f"Tesseract processed page {page_num + 1} with {len(words)} words")
        return {"page_num": page_num + 1, "text": text, "words": words}
    except Exception as e:
        logger.error(f"Tesseract error on page {page_num + 1}: {e}")
        return {"page_num": page_num + 1, "text": f"Tesseract Error: {str(e)}", "words": []}

# TrOCR OCR
def ocr_with_trocr(pdf_bytes, page_num):
    if not trocr_model or not trocr_processor:
        logger.warning(f"TrOCR not available for page {page_num + 1}")
        return {"page_num": page_num + 1, "text": "TrOCR not initialized", "words": []}
    try:
        images = convert_from_bytes(pdf_bytes, first_page=page_num+1, last_page=page_num+1)
        if not images:
            logger.info(f"Page {page_num + 1} is blank")
            return {"page_num": page_num + 1, "text": "Blank page", "words": []}
        image = images[0].convert("RGB")
        pixel_values = trocr_processor(image, return_tensors="pt").pixel_values.to("cpu")
        with torch.no_grad():
            generated_ids = trocr_model.generate(pixel_values, max_length=50)
        text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        words = [{"text": word, "left": 0, "top": 0, "width": 0, "height": 0} for word in text.split()]
        logger.info(f"TrOCR processed page {page_num + 1} with text: {text}")
        return {"page_num": page_num + 1, "text": text, "words": words}
    except Exception as e:
        logger.error(f"TrOCR error on page {page_num + 1}: {e}")
        return {"page_num": page_num + 1, "text": f"TrOCR Error: {str(e)}", "words": []}

# Map Tesseract bounding boxes to OCR text
def map_tesseract_to_ocr(tesseract_result, ocr_result):
    if not tesseract_result["words"] or "Error" in ocr_result["text"]:
        logger.info(f"Mapping skipped for page {tesseract_result['page_num']}: No Tesseract words or OCR error")
        return {**ocr_result, "words": tesseract_result["words"]}
    
    ocr_text = ocr_result["text"]
    tesseract_words = tesseract_result["words"]
    
    sentences = re.split(r'(?<=[.!?])\s+', ocr_text.strip())
    sentence_embeddings = embedder.encode(sentences)
    
    mapped_words = []
    for word in tesseract_words:
        word_embedding = embedder.encode(word["text"])
        similarities = [
            dot(word_embedding, sent_emb) / (norm(word_embedding) * norm(sent_emb)) if norm(sent_emb) != 0 else 0
            for sent_emb in sentence_embeddings
        ]
        best_match_idx = similarities.index(max(similarities))
        best_sentence = sentences[best_match_idx]
        if word["text"].lower() in best_sentence.lower():
            mapped_words.append(word)
        else:
            mapped_words.append(word)
    logger.info(f"Mapped {len(mapped_words)} words for page {tesseract_result['page_num']}")
    return {**ocr_result, "words": mapped_words}

# Update combined PDF
def update_combined_pdf(pdf_bytes, page_num):
    pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
    page = pdf_reader.pages[page_num]
    writer = PdfWriter()
    if os.path.exists(COMBINED_PDF_PATH):
        existing_pdf = PdfReader(COMBINED_PDF_PATH)
        for p in existing_pdf.pages:
            writer.add_page(p)
    writer.add_page(page)
    with open(COMBINED_PDF_PATH, "wb") as f:
        writer.write(f)
    logger.info(f"Updated combined PDF with page {page_num + 1}")

# Process page
def process_page(pdf_bytes, page_num, ocr_backend, filename, tracking_state, storage_mode):
    tesseract_result = ocr_with_tesseract(pdf_bytes, page_num)
    ocr_result = ocr_with_trocr(pdf_bytes, page_num) if ocr_backend == "trocr" else ocr_with_tesseract(pdf_bytes, page_num)
    combined_result = map_tesseract_to_ocr(tesseract_result, ocr_result)
    
    local_page_path = os.path.join(PAGES_DIR, f"{filename}_page_{combined_result['page_num']}_{datetime.now().strftime('%Y%m%d%H%M%S')}.pdf")
    writer = PdfWriter()
    pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
    writer.add_page(pdf_reader.pages[page_num])
    with open(local_page_path, "wb") as f:
        writer.write(f)
    
    if storage_mode == "hf":
        remote_page_path = f"pages/{os.path.basename(local_page_path)}"
        HF_API.upload_file(
            path_or_fileobj=local_page_path,
            path_in_repo=remote_page_path,
            repo_id=HF_DATASET_REPO,
            repo_type="dataset",
            token=HF_TOKEN
        )
        logger.info(f"Uploaded page to {HF_DATASET_REPO}/{remote_page_path}")
        combined_result["page_file"] = remote_page_path
    else:  # local
        update_combined_pdf(pdf_bytes, page_num)
        combined_result["page_file"] = local_page_path
    
    combined_result["pdf_page"] = tracking_state["last_offset"] + page_num
    
    # Update ChromaDB
    chroma_collection.add(
        documents=[combined_result["text"]],
        metadatas=[{"filename": filename, "page_num": combined_result["page_num"], "page_file": combined_result["page_file"], "words": json.dumps(combined_result["words"])}],
        ids=[f"{filename}_page_{combined_result['page_num']}"]
    )
    logger.info(f"Added page {combined_result['page_num']} to ChromaDB")
    
    return combined_result

# Extract PDF URLs from text
def extract_pdf_urls(text):
    url_pattern = r'(https?://[^\s]+?\.pdf)'
    return re.findall(url_pattern, text)

# Load or initialize tracking state
def load_tracking_state():
    if os.path.exists(TRACKING_FILE):
        with open(TRACKING_FILE, "r") as f:
            return json.load(f)
    return {"processed_urls": {}, "last_offset": 0}

def save_tracking_state(state):
    with open(TRACKING_FILE, "w") as f:
        json.dump(state, f)

# Push to Hugging Face Dataset
def push_to_hf_dataset(new_data):
    try:
        for item in new_data:
            if "url" not in item or not isinstance(item["url"], str):
                logger.error(f"Invalid item in new_data: {item}")
                raise ValueError(f"Each item must have a valid 'url' key; found {item}")
        
        try:
            dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")
            existing_data = dataset["train"].to_dict()
            logger.info(f"Loaded existing dataset with keys: {list(existing_data.keys())}")
        except Exception as e:
            logger.info(f"No existing dataset found or error loading: {e}, initializing new dataset")
            existing_data = {"filename": [], "pages": [], "url": [], "embedding": [], "processed_at": [], "pdf_page_offset": []}
        
        required_keys = ["filename", "pages", "url", "embedding", "processed_at", "pdf_page_offset"]
        for key in required_keys:
            if key not in existing_data:
                existing_data[key] = []
                logger.warning(f"Initialized missing key '{key}' in existing_data")
        
        existing_urls = set(existing_data["url"])
        for item in new_data:
            logger.debug(f"Processing item: {item}")
            if item["url"] not in existing_urls:
                for key in required_keys:
                    existing_data[key].append(item.get(key, None))
                existing_urls.add(item["url"])
                logger.info(f"Added new URL: {item['url']}")
            else:
                idx = existing_data["url"].index(item["url"])
                existing_data["pages"][idx].extend(item["pages"])
                existing_data["embedding"][idx] = item["embedding"]
                existing_data["processed_at"][idx] = item["processed_at"]
                logger.info(f"Updated existing URL: {item['url']}")
        
        updated_dataset = Dataset.from_dict(existing_data)
        updated_dataset.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
        logger.info(f"Successfully appended/updated {len(new_data)} records to {HF_DATASET_REPO}")
    except Exception as e:
        logger.error(f"Failed to push to HF Dataset: {str(e)}")
        raise

# Check if URL is fully processed
def is_url_fully_processed(url, progress_log, total_pages):
    return url in progress_log["urls"] and progress_log["urls"][url]["status"] == "completed" and progress_log["urls"][url]["processed_pages"] >= total_pages

# Process PDF URL with SSE
def process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
    filename = url.split("/")[-1]
    try:
        yield f"data: {json.dumps({'status': 'fetching', 'filename': filename})}\n\n"
        logger.info(f"Fetching PDF from {url}")
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        pdf_bytes = response.content
        pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
        total_pages = len(pdf_reader.pages)
        
        progress_log["urls"].setdefault(url, {"status": "pending", "processed_pages": 0})
        start_page = progress_log["urls"][url]["processed_pages"]
        
        if is_url_fully_processed(url, progress_log, total_pages):
            yield f"data: {json.dumps({'status': 'skipped', 'filename': filename, 'message': 'URL already fully processed'})}\n\n"
            return
        
        pages = []
        for page_num in range(start_page, total_pages):
            yield f"data: {json.dumps({'status': 'processing', 'filename': filename, 'page_num': page_num + 1, 'total_pages': total_pages})}\n\n"
            page = process_page(pdf_bytes, page_num, ocr_backend, filename, tracking_state, storage_mode)
            pages.append(page)
            yield f"data: {json.dumps({'filename': filename, 'page': page})}\n\n"
            progress_log["urls"][url]["processed_pages"] = page_num + 1
            save_progress_log(progress_log, storage_mode)
        
        full_text = "\n\n".join(f"Page {page['page_num']}\n{page['text']}" for page in pages)
        embedding = embedder.encode(full_text).tolist() if full_text.strip() else None
        result = {
            "filename": filename,
            "pages": pages,
            "url": url,
            "embedding": embedding,
            "processed_at": datetime.now().isoformat(),
            "pdf_page_offset": tracking_state["last_offset"]
        }
        if storage_mode == "hf":
            push_to_hf_dataset([result])
        tracking_state["last_offset"] += total_pages - start_page
        progress_log["urls"][url]["status"] = "completed"
        save_tracking_state(tracking_state)
        save_progress_log(progress_log, storage_mode)
        yield f"data: {json.dumps({'status': 'completed', 'filename': filename, 'new_offset': tracking_state['last_offset']})}\n\n"
        logger.info(f"Completed processing {filename} with new offset {tracking_state['last_offset']}")
    except requests.RequestException as e:
        logger.error(f"Failed to fetch PDF from {url}: {e}")
        yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error fetching PDF: {str(e)}'})}\n\n"
    except Exception as e:
        logger.error(f"Error processing {url}: {e}")
        yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error: {str(e)}'})}\n\n"

# Process text content with SSE
def process_text_content(text, filename, ocr_backend, tracking_state, progress_log, storage_mode):
    try:
        pdf_urls = extract_pdf_urls(text)
        processed_urls = [url for url in pdf_urls if url in progress_log["urls"] and progress_log["urls"][url]["status"] == "completed"]
        new_urls = [url for url in pdf_urls if url not in progress_log["urls"] or progress_log["urls"][url]["status"] != "completed"]
        
        initial_text = (f"Found {len(pdf_urls)} PDF URLs:\n" +
                       f"Already processed: {len(processed_urls)}\n" + "\n".join(processed_urls) + "\n" +
                       f"To process: {len(new_urls)}\n" + "\n".join(new_urls) + "\n\nProcessing...")
        yield f"data: {json.dumps({'status': 'info', 'filename': filename, 'message': initial_text})}\n\n"
        
        for url in new_urls:
            logger.info(f"Starting processing of {url} with offset {tracking_state['last_offset']}")
            for event in process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
                yield event
    except Exception as e:
        logger.error(f"Error processing text content for {filename}: {e}")
        yield f"data: {json.dumps({'status': 'error', 'filename': filename, 'message': f'Error: {str(e)}'})}\n\n"

# Home route
@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")

# Process URL endpoint with GET
@app.route("/process_url", methods=["GET"])
def process_url():
    url = request.args.get("url")
    ocr_backend = request.args.get("ocr_backend", "trocr")
    storage_mode = request.args.get("storage_mode", "hf")
    
    if not url:
        return jsonify({"error": "No URL provided"}), 400
    
    tracking_state = load_tracking_state()
    progress_log = load_progress_log(storage_mode)
    
    def generate():
        logger.info(f"Processing URL: {url} with ocr_backend={ocr_backend}, storage_mode={storage_mode}, starting offset={tracking_state['last_offset']}")
        if url.endswith(".pdf"):
            for event in process_pdf_url(url, ocr_backend, tracking_state, progress_log, storage_mode):
                yield event
        elif url.endswith(".txt"):
            try:
                response = requests.get(url, timeout=10)
                response.raise_for_status()
                text = response.text
                filename = url.split("/")[-1]
                logger.info(f"Fetched text from {url}")
                for event in process_text_content(text, filename, ocr_backend, tracking_state, progress_log, storage_mode):
                    yield event
            except requests.RequestException as e:
                logger.error(f"Failed to fetch text from {url}: {e}")
                yield f"data: {json.dumps({'status': 'error', 'filename': url, 'message': f'Error fetching URL: {str(e)}'})}\n\n"
        else:
            yield f"data: {json.dumps({'status': 'error', 'filename': url, 'message': 'Unsupported URL format. Must end in .pdf or .txt'})}\n\n"
        logger.info(f"Finished processing URL: {url}")
    
    return Response(generate(), mimetype="text/event-stream")

# Search page
@app.route("/search", methods=["GET"])
def search_page():
    storage_mode = request.args.get("storage_mode", "hf")
    if storage_mode == "hf":
        try:
            dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")["train"]
            files = [{"filename": f, "url": u, "pages": p} for f, u, p in zip(dataset["filename"], dataset["url"], dataset["pages"])]
            return render_template("search.html", files=files, storage_mode=storage_mode)
        except Exception as e:
            logger.error(f"Error loading search page: {e}")
            return render_template("search.html", files=[], error=str(e), storage_mode=storage_mode)
    else:  # local
        files = []
        results = chroma_collection.get()
        for i, metadata in enumerate(results["metadatas"]):
            files.append({
                "filename": metadata["filename"],
                "url": "",
                "pages": [{"page_num": metadata["page_num"], "text": results["documents"][i], "page_file": metadata["page_file"], "words": json.loads(metadata["words"])}]
            })
        return render_template("search.html", files=files, storage_mode=storage_mode)

# Semantic search route
@app.route("/search_documents", methods=["POST"])
def search_documents():
    query = request.form.get("query")
    storage_mode = request.form.get("storage_mode", "hf")
    if not query:
        return jsonify({"error": "No query provided"}), 400
    
    if storage_mode == "hf":
        try:
            dataset = load_dataset(HF_DATASET_REPO, token=HF_TOKEN, cache_dir="/app/cache")["train"]
            query_embedding = embedder.encode(query).tolist()
            
            embeddings = [e for e in dataset["embedding"] if e is not None]
            documents = dataset["pages"]
            filenames = dataset["filename"]
            urls = dataset["url"]
            processed_ats = dataset["processed_at"]
            pdf_page_offsets = dataset["pdf_page_offset"]
            
            similarities = [
                dot(query_embedding, emb) / (norm(query_embedding) * norm(emb)) if norm(emb) != 0 else 0
                for emb in embeddings
            ]
            
            sorted_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:5]
            results = []
            
            for idx, i in enumerate(sorted_indices):
                pages = documents[i]
                highlighted_pages = []
                for page in pages:
                    words = page["words"]
                    text = page["text"]
                    pdf_page_num = page["pdf_page"]
                    page_file = page["page_file"]
                    page_url = f"https://huggingface.co/datasets/{HF_DATASET_REPO}/resolve/main/{page_file}"
                    response = requests.get(page_url)
                    response.raise_for_status()
                    pdf_bytes = response.content
                    pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8')
                    
                    sentences = re.split(r'(?<=[.!?])\s+', text)
                    highlights = []
                    for sent_idx, sentence in enumerate(sentences):
                        sent_embedding = embedder.encode(sentence).tolist()
                        similarity = dot(query_embedding, sent_embedding) / (norm(query_embedding) * norm(sent_embedding)) if norm(sent_embedding) != 0 else 0
                        if similarity > 0.7:
                            matching_words = []
                            sent_words = sentence.split()
                            word_idx = 0
                            for word in words:
                                if word_idx < len(sent_words) and word["text"].lower() in sent_words[word_idx].lower():
                                    matching_words.append(word)
                                    word_idx += 1
                            highlights.append({"sentence": sentence, "index": sent_idx, "words": matching_words})
                    highlighted_pages.append({
                        "page_num": page["page_num"],
                        "text": text,
                        "highlights": highlights,
                        "pdf_page": pdf_page_num,
                        "pdf_data": pdf_base64,
                        "page_url": page_url
                    })
                results.append({
                    "filename": filenames[i],
                    "pages": highlighted_pages,
                    "url": urls[i],
                    "processed_at": processed_ats[i],
                    "similarity": similarities[i],
                    "pdf_page_offset": pdf_page_offsets[i]
                })
            return jsonify({"results": results})
        except Exception as e:
            logger.error(f"Search error: {e}")
            return jsonify({"error": str(e)}), 500
    else:  # local with ChromaDB
        try:
            query_results = chroma_collection.query(query_texts=[query], n_results=5)
            results = []
            for i, doc in enumerate(query_results["documents"][0]):
                metadata = query_results["metadatas"][0][i]
                words = json.loads(metadata["words"])
                text = doc
                sentences = re.split(r'(?<=[.!?])\s+', text)
                highlights = []
                query_embedding = embedder.encode(query).tolist()
                for sent_idx, sentence in enumerate(sentences):
                    sent_embedding = embedder.encode(sentence).tolist()
                    similarity = dot(query_embedding, sent_embedding) / (norm(query_embedding) * norm(sent_embedding)) if norm(sent_embedding) != 0 else 0
                    if similarity > 0.7:
                        matching_words = []
                        sent_words = sentence.split()
                        word_idx = 0
                        for word in words:
                            if word_idx < len(sent_words) and word["text"].lower() in sent_words[word_idx].lower():
                                matching_words.append(word)
                                word_idx += 1
                        highlights.append({"sentence": sentence, "index": sent_idx, "words": matching_words})
                with open(metadata["page_file"], "rb") as f:
                    pdf_bytes = f.read()
                pdf_base64 = base64.b64encode(pdf_bytes).decode('utf-8')
                results.append({
                    "filename": metadata["filename"],
                    "pages": [{
                        "page_num": metadata["page_num"],
                        "text": text,
                        "highlights": highlights,
                        "pdf_page": metadata["page_num"],
                        "pdf_data": pdf_base64,
                        "page_url": metadata["page_file"]
                    }],
                    "url": "",
                    "processed_at": datetime.now().isoformat(),
                    "similarity": query_results["distances"][0][i]
                })
            return jsonify({"results": results})
        except Exception as e:
            logger.error(f"ChromaDB search error: {e}")
            return jsonify({"error": str(e)}), 500

# Download output folder
@app.route("/download_output", methods=["GET"])
def download_output():
    try:
        zip_path = "/app/output.zip"
        shutil.make_archive("/app/output", "zip", OUTPUT_DIR)
        return send_file(zip_path, download_name="output.zip", as_attachment=True, mimetype="application/zip")
    except Exception as e:
        logger.error(f"Error creating zip: {e}")
        return jsonify({"error": str(e)}), 500

# Preview output contents
@app.route("/preview_output", methods=["GET"])
def preview_output():
    try:
        combined_pdf_base64 = ""
        if os.path.exists(COMBINED_PDF_PATH):
            with open(COMBINED_PDF_PATH, "rb") as f:
                combined_pdf_base64 = base64.b64encode(f.read()).decode('utf-8')
        
        progress_json = {}
        if os.path.exists(PROGRESS_JSON_PATH):
            with open(PROGRESS_JSON_PATH, "r") as f:
                progress_json = json.load(f)
        
        return jsonify({
            "combined_pdf": combined_pdf_base64,
            "progress_json": progress_json
        })
    except Exception as e:
        logger.error(f"Error previewing output: {e}")
        return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    app.run(host="0.0.0.0", port=port, debug=True)