Spaces:
Sleeping
Sleeping
File size: 15,760 Bytes
3bd9648 b2c5fcd 3bd9648 b2c5fcd 3bd9648 9cb0542 3bd9648 9cb0542 b2c5fcd 9cb0542 b2c5fcd 9cb0542 b2c5fcd 9cb0542 b2c5fcd 9cb0542 b2c5fcd 9cb0542 3bd9648 49003da b2c5fcd 49003da 9cb0542 3bd9648 9cb0542 3bd9648 b2c5fcd 3bd9648 9cb0542 b2c5fcd 3bd9648 b2c5fcd 3bd9648 9cb0542 b2c5fcd 3bd9648 b2c5fcd 3bd9648 9cb0542 b2c5fcd 9cb0542 3bd9648 9cb0542 b2c5fcd 3bd9648 b2c5fcd 3bd9648 9cb0542 b2c5fcd 9cb0542 3bd9648 49003da 3bd9648 49003da 3bd9648 9cb0542 49003da b2c5fcd 49003da b2c5fcd 3bd9648 b2c5fcd 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 b2c5fcd 3bd9648 9cb0542 3bd9648 9cb0542 3bd9648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
// static/script.js
let scene, camera, renderer, controls;
let spheres = [];
let fluidParticles = [];
let simulationRunning = false;
const PARTICLE_COUNT = 5000;
const SPACE_SIZE = 40;
const FLUID_SPEED = 0.1;
let FLUID_FRICTION = 0.9;
let FLUID_DEFLECTION = 0.1;
const GRAVITY_CONSTANT = 0.1;
// Scaling factors
const MASS_SCALE = 1e-26; // Scale down masses for simulation
const DISTANCE_SCALE = 1e-7; // Scale down distances (km to simulation units)
const VELOCITY_SCALE = 1e-3; // Scale down velocities (km/s to simulation units)
init();
animate();
function init() {
// Scene setup
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.position.set(0, 20, 40);
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth - 300, window.innerHeight);
document.getElementById('scene-container').appendChild(renderer.domElement);
controls = new THREE.OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.05;
// Add Sun
const sunGeometry = new THREE.SphereGeometry(1, 32, 32);
const sunMaterial = new THREE.MeshBasicMaterial({ color: 0xFFFF00 });
const sun = new THREE.Mesh(sunGeometry, sunMaterial);
sun.position.set(0, 0, 0);
sun.userData = { mass: 1.989e30 * MASS_SCALE, velocity: new THREE.Vector3(0, 0, 0) };
scene.add(sun);
spheres.push(sun);
// Add Earth
const earthGeometry = new THREE.SphereGeometry(0.3, 32, 32);
const earthMaterial = new THREE.MeshBasicMaterial({ color: 0x0000FF });
const earth = new THREE.Mesh(earthGeometry, earthMaterial);
earth.position.set(149.6e6 * DISTANCE_SCALE, 0, 0);
earth.userData = {
mass: 5.972e24 * MASS_SCALE,
velocity: new THREE.Vector3(0, 0, 29.8 * VELOCITY_SCALE),
centripetalScale: 1
};
scene.add(earth);
spheres.push(earth);
// Add Mars
const marsGeometry = new THREE.SphereGeometry(0.25, 32, 32);
const marsMaterial = new THREE.MeshBasicMaterial({ color: 0xFF4500 });
const mars = new THREE.Mesh(marsGeometry, marsMaterial);
mars.position.set(227.9e6 * DISTANCE_SCALE, 0, 0);
mars.userData = {
mass: 6.417e23 * MASS_SCALE,
velocity: new THREE.Vector3(0, 0, 24.1 * VELOCITY_SCALE),
centripetalScale: 1
};
scene.add(mars);
spheres.push(mars);
// Add fluid particles
const particleGeometry = new THREE.SphereGeometry(0.05, 8, 8);
const particleMaterial = new THREE.MeshBasicMaterial({ color: 0x00BFFF, transparent: true, opacity: 0.5 });
for (let i = 0; i < PARTICLE_COUNT; i++) {
const particle = new THREE.Mesh(particleGeometry, particleMaterial);
particle.position.set(
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE
);
particle.userData = {
velocity: new THREE.Vector3(
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED
)
};
scene.add(particle);
fluidParticles.push(particle);
}
// Add grid helper for reference
const gridHelper = new THREE.GridHelper(SPACE_SIZE, 20);
gridHelper.position.y = -SPACE_SIZE / 2;
scene.add(gridHelper);
// Event listeners for controls
document.getElementById('start-btn').addEventListener('click', startSimulation);
document.getElementById('stop-btn').addEventListener('click', stopSimulation);
document.getElementById('reset-btn').addEventListener('click', resetSimulation);
document.getElementById('save-btn').addEventListener('click', saveSettings);
document.getElementById('load-btn').addEventListener('click', loadSettings);
// Update parameters when sliders change
['sun', 'earth', 'mars'].forEach(body => {
document.getElementById(`${body}-mass`).addEventListener('input', updateParams);
document.getElementById(`${body}-x`).addEventListener('input', updateParams);
document.getElementById(`${body}-y`).addEventListener('input', updateParams);
document.getElementById(`${body}-z`).addEventListener('input', updateParams);
if (body !== 'sun') {
document.getElementById(`${body}-orbital-velocity`).addEventListener('input', updateParams);
document.getElementById(`${body}-centripetal`).addEventListener('input', updateParams);
}
});
document.getElementById('fluid-friction').addEventListener('input', updateParams);
document.getElementById('fluid-deflection').addEventListener('input', updateParams);
// Handle window resize
window.addEventListener('resize', () => {
camera.aspect = (window.innerWidth - 300) / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth - 300, window.innerHeight);
});
// Initial update to display scaled values
updateParams();
}
function updateParams() {
// Update Sun
const sunMass = parseFloat(document.getElementById('sun-mass').value);
spheres[0].userData.mass = sunMass * MASS_SCALE;
document.getElementById('sun-mass-scaled').textContent = (sunMass * MASS_SCALE).toExponential(2);
spheres[0].position.set(
parseFloat(document.getElementById('sun-x').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('sun-y').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('sun-z').value) * DISTANCE_SCALE
);
// Update Earth
const earthMass = parseFloat(document.getElementById('earth-mass').value);
spheres[1].userData.mass = earthMass * MASS_SCALE;
document.getElementById('earth-mass-scaled').textContent = (earthMass * MASS_SCALE).toExponential(2);
spheres[1].position.set(
parseFloat(document.getElementById('earth-x').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('earth-y').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('earth-z').value) * DISTANCE_SCALE
);
const earthVelocity = parseFloat(document.getElementById('earth-orbital-velocity').value);
spheres[1].userData.velocity.set(0, 0, earthVelocity * VELOCITY_SCALE);
document.getElementById('earth-velocity-scaled').textContent = (earthVelocity * VELOCITY_SCALE).toFixed(4);
spheres[1].userData.centripetalScale = parseFloat(document.getElementById('earth-centripetal').value);
// Update Mars
const marsMass = parseFloat(document.getElementById('mars-mass').value);
spheres[2].userData.mass = marsMass * MASS_SCALE;
document.getElementById('mars-mass-scaled').textContent = (marsMass * MASS_SCALE).toExponential(2);
spheres[2].position.set(
parseFloat(document.getElementById('mars-x').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('mars-y').value) * DISTANCE_SCALE,
parseFloat(document.getElementById('mars-z').value) * DISTANCE_SCALE
);
const marsVelocity = parseFloat(document.getElementById('mars-orbital-velocity').value);
spheres[2].userData.velocity.set(0, 0, marsVelocity * VELOCITY_SCALE);
document.getElementById('mars-velocity-scaled').textContent = (marsVelocity * VELOCITY_SCALE).toFixed(4);
spheres[2].userData.centripetalScale = parseFloat(document.getElementById('mars-centripetal').value);
// Update fluid interaction parameters
FLUID_FRICTION = parseFloat(document.getElementById('fluid-friction').value);
FLUID_DEFLECTION = parseFloat(document.getElementById('fluid-deflection').value);
}
function startSimulation() {
// Update parameters to ensure the simulation uses the latest values
updateParams();
simulationRunning = true;
document.getElementById('status-message').textContent = 'Simulation started';
document.getElementById('status-message').style.color = '#4CAF50';
}
function stopSimulation() {
simulationRunning = false;
document.getElementById('status-message').textContent = 'Simulation stopped';
document.getElementById('status-message').style.color = '#F44336';
}
function resetSimulation() {
// Stop the simulation
simulationRunning = false;
// Reset fluid particles
fluidParticles.forEach(particle => {
particle.position.set(
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE,
(Math.random() - 0.5) * SPACE_SIZE
);
particle.userData.velocity.set(
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED,
(Math.random() - 0.5) * FLUID_SPEED
);
});
// Reset sphere positions and velocities using current control values
updateParams();
document.getElementById('status-message').textContent = 'Simulation reset';
document.getElementById('status-message').style.color = '#2196F3';
}
function saveSettings() {
const settings = {
sun: {
mass: parseFloat(document.getElementById('sun-mass').value),
position: [
parseFloat(document.getElementById('sun-x').value),
parseFloat(document.getElementById('sun-y').value),
parseFloat(document.getElementById('sun-z').value)
],
orbital_velocity: 0
},
earth: {
mass: parseFloat(document.getElementById('earth-mass').value),
position: [
parseFloat(document.getElementById('earth-x').value),
parseFloat(document.getElementById('earth-y').value),
parseFloat(document.getElementById('earth-z').value)
],
orbital_velocity: parseFloat(document.getElementById('earth-orbital-velocity').value)
},
mars: {
mass: parseFloat(document.getElementById('mars-mass').value),
position: [
parseFloat(document.getElementById('mars-x').value),
parseFloat(document.getElementById('mars-y').value),
parseFloat(document.getElementById('mars-z').value)
],
orbital_velocity: parseFloat(document.getElementById('mars-orbital-velocity').value)
},
fluid_speed: FLUID_SPEED,
fluid_friction: FLUID_FRICTION,
fluid_deflection: FLUID_DEFLECTION
};
fetch('/api/save', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(settings)
})
.then(response => response.json())
.then(data => {
document.getElementById('status-message').textContent = data.message || data.status;
document.getElementById('status-message').style.color = data.status === 'success' ? '#4CAF50' : '#FF0000';
})
.catch(error => {
document.getElementById('status-message').textContent = 'Error saving settings';
document.getElementById('status-message').style.color = '#FF0000';
});
}
function loadSettings() {
fetch('/api/load')
.then(response => response.json())
.then(data => {
if (data.status === 'success') {
const params = data.params;
document.getElementById('sun-mass').value = params.sun.mass;
document.getElementById('sun-x').value = params.sun.position[0];
document.getElementById('sun-y').value = params.sun.position[1];
document.getElementById('sun-z').value = params.sun.position[2];
document.getElementById('earth-mass').value = params.earth.mass;
document.getElementById('earth-x').value = params.earth.position[0];
document.getElementById('earth-y').value = params.earth.position[1];
document.getElementById('earth-z').value = params.earth.position[2];
document.getElementById('earth-orbital-velocity').value = params.earth.orbital_velocity;
document.getElementById('mars-mass').value = params.mars.mass;
document.getElementById('mars-x').value = params.mars.position[0];
document.getElementById('mars-y').value = params.mars.position[1];
document.getElementById('mars-z').value = params.mars.position[2];
document.getElementById('mars-orbital-velocity').value = params.mars.orbital_velocity;
document.getElementById('fluid-friction').value = params.fluid_friction;
document.getElementById('fluid-deflection').value = params.fluid_deflection;
updateParams();
document.getElementById('status-message').textContent = 'Settings loaded successfully';
document.getElementById('status-message').style.color = '#4CAF50';
} else {
document.getElementById('status-message').textContent = data.message;
document.getElementById('status-message').style.color = '#FF0000';
}
})
.catch(error => {
document.getElementById('status-message').textContent = 'Error loading settings';
document.getElementById('status-message').style.color = '#FF0000';
});
}
function animate() {
requestAnimationFrame(animate);
if (simulationRunning) {
// Update fluid particles
fluidParticles.forEach(particle => {
let position = particle.position;
let velocity = particle.userData.velocity;
// Check for interactions with spheres
spheres.forEach(sphere => {
let distance = position.distanceTo(sphere.position);
let sphereRadius = sphere.geometry.parameters.radius + 0.5;
if (distance < sphereRadius) {
// Apply friction
velocity.multiplyScalar(FLUID_FRICTION);
// Apply gravitational deflection
let direction = sphere.position.clone().sub(position).normalize();
let forceMagnitude = (FLUID_DEFLECTION * sphere.userData.mass) / (distance * distance);
let force = direction.multiplyScalar(forceMagnitude);
velocity.add(force);
}
});
// Update position
position.add(velocity);
// Boundary conditions (wrap around)
if (Math.abs(position.x) > SPACE_SIZE / 2) position.x = -Math.sign(position.x) * SPACE_SIZE / 2;
if (Math.abs(position.y) > SPACE_SIZE / 2) position.y = -Math.sign(position.y) * SPACE_SIZE / 2;
if (Math.abs(position.z) > SPACE_SIZE / 2) position.z = -Math.sign(position.z) * SPACE_SIZE / 2;
});
// Update sphere positions (gravitational interaction and orbital dynamics)
spheres.forEach((sphere, i) => {
if (i === 0) return; // Sun is stationary
let acceleration = new THREE.Vector3();
spheres.forEach((otherSphere, j) => {
if (i !== j) {
let distance = sphere.position.distanceTo(otherSphere.position);
if (distance > 0.1) {
let direction = otherSphere.position.clone().sub(sphere.position).normalize();
let force = (GRAVITY_CONSTANT * otherSphere.userData.mass) / (distance * distance);
acceleration.add(direction.multiplyScalar(force * sphere.userData.centripetalScale));
}
}
});
// Update velocity and position
sphere.userData.velocity.add(acceleration);
sphere.position.add(sphere.userData.velocity);
});
}
controls.update();
renderer.render(scene, camera);
} |