File size: 7,789 Bytes
3bd9648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// static/script.js
let scene, camera, renderer, controls;
let spheres = [];
let fluidParticles = [];
let simulationRunning = false;

const PARTICLE_COUNT = 5000;
const SPACE_SIZE = 20;
const FLUID_SPEED = 0.1;
const FRICTION_FACTOR = 0.9;
const GRAVITY_CONSTANT = 0.1;

init();
animate();

function init() {
    // Scene setup
    scene = new THREE.Scene();
    camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
    camera.position.set(0, 10, 20);

    renderer = new THREE.WebGLRenderer({ antialias: true });
    renderer.setSize(window.innerWidth - 300, window.innerHeight);
    document.getElementById('scene-container').appendChild(renderer.domElement);

    controls = new THREE.OrbitControls(camera, renderer.domElement);
    controls.enableDamping = true;
    controls.dampingFactor = 0.05;

    // Add spheres
    const brownGeometry = new THREE.SphereGeometry(0.5, 32, 32);
    const brownMaterial = new THREE.MeshBasicMaterial({ color: 0x8B4513 });
    const brownSphere = new THREE.Mesh(brownGeometry, brownMaterial);
    brownSphere.position.set(0, 0, 0);
    brownSphere.userData = { mass: 92 };
    scene.add(brownSphere);
    spheres.push(brownSphere);

    const greenGeometry = new THREE.SphereGeometry(0.4, 32, 32);
    const greenMaterial = new THREE.MeshBasicMaterial({ color: 0x00FF00 });
    const greenSphere = new THREE.Mesh(greenGeometry, greenMaterial);
    greenSphere.position.set(5, 0, 5);
    greenSphere.userData = { mass: 29 };
    scene.add(greenSphere);
    spheres.push(greenSphere);

    const redGeometry = new THREE.SphereGeometry(0.3, 32, 32);
    const redMaterial = new THREE.MeshBasicMaterial({ color: 0xFF0000 });
    const redSphere = new THREE.Mesh(redGeometry, redMaterial);
    redSphere.position.set(-5, 0, -5);
    redSphere.userData = { mass: 10 };
    scene.add(redSphere);
    spheres.push(redSphere);

    // Add fluid particles
    const particleGeometry = new THREE.SphereGeometry(0.05, 8, 8);
    const particleMaterial = new THREE.MeshBasicMaterial({ color: 0x00BFFF, transparent: true, opacity: 0.5 });
    for (let i = 0; i < PARTICLE_COUNT; i++) {
        const particle = new THREE.Mesh(particleGeometry, particleMaterial);
        particle.position.set(
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE
        );
        particle.userData = {
            velocity: new THREE.Vector3(
                (Math.random() - 0.5) * FLUID_SPEED,
                (Math.random() - 0.5) * FLUID_SPEED,
                (Math.random() - 0.5) * FLUID_SPEED
            )
        };
        scene.add(particle);
        fluidParticles.push(particle);
    }

    // Add grid helper for reference
    const gridHelper = new THREE.GridHelper(SPACE_SIZE, 20);
    gridHelper.position.y = -SPACE_SIZE / 2;
    scene.add(gridHelper);

    // Event listeners for controls
    document.getElementById('start-btn').addEventListener('click', () => {
        simulationRunning = true;
        updateParams();
    });

    document.getElementById('reset-btn').addEventListener('click', () => {
        simulationRunning = false;
        resetSimulation();
    });

    // Update sphere positions and masses from sliders
    ['brown', 'green', 'red'].forEach(color => {
        document.getElementById(`${color}-mass`).addEventListener('input', updateParams);
        document.getElementById(`${color}-x`).addEventListener('input', updateParams);
        document.getElementById(`${color}-y`).addEventListener('input', updateParams);
        document.getElementById(`${color}-z`).addEventListener('input', updateParams);
    });

    // Handle window resize
    window.addEventListener('resize', () => {
        camera.aspect = (window.innerWidth - 300) / window.innerHeight;
        camera.updateProjectionMatrix();
        renderer.setSize(window.innerWidth - 300, window.innerHeight);
    });
}

function updateParams() {
    spheres[0].userData.mass = parseFloat(document.getElementById('brown-mass').value);
    spheres[0].position.set(
        parseFloat(document.getElementById('brown-x').value),
        parseFloat(document.getElementById('brown-y').value),
        parseFloat(document.getElementById('brown-z').value)
    );

    spheres[1].userData.mass = parseFloat(document.getElementById('green-mass').value);
    spheres[1].position.set(
        parseFloat(document.getElementById('green-x').value),
        parseFloat(document.getElementById('green-y').value),
        parseFloat(document.getElementById('green-z').value)
    );

    spheres[2].userData.mass = parseFloat(document.getElementById('red-mass').value);
    spheres[2].position.set(
        parseFloat(document.getElementById('red-x').value),
        parseFloat(document.getElementById('red-y').value),
        parseFloat(document.getElementById('red-z').value)
    );
}

function resetSimulation() {
    fluidParticles.forEach(particle => {
        particle.position.set(
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE,
            (Math.random() - 0.5) * SPACE_SIZE
        );
        particle.userData.velocity.set(
            (Math.random() - 0.5) * FLUID_SPEED,
            (Math.random() - 0.5) * FLUID_SPEED,
            (Math.random() - 0.5) * FLUID_SPEED
        );
    });
}

function animate() {
    requestAnimationFrame(animate);

    if (simulationRunning) {
        // Update fluid particles
        fluidParticles.forEach(particle => {
            let position = particle.position;
            let velocity = particle.userData.velocity;

            // Check for interactions with spheres
            spheres.forEach(sphere => {
                let distance = position.distanceTo(sphere.position);
                let sphereRadius = sphere.geometry.parameters.radius + 0.5; // Interaction radius

                if (distance < sphereRadius) {
                    // Apply friction
                    velocity.multiplyScalar(FRICTION_FACTOR);

                    // Apply gravitational deflection
                    let direction = sphere.position.clone().sub(position).normalize();
                    let forceMagnitude = (GRAVITY_CONSTANT * sphere.userData.mass) / (distance * distance);
                    let force = direction.multiplyScalar(forceMagnitude);
                    velocity.add(force);
                }
            });

            // Update position
            position.add(velocity);

            // Boundary conditions (wrap around)
            if (Math.abs(position.x) > SPACE_SIZE / 2) position.x = -Math.sign(position.x) * SPACE_SIZE / 2;
            if (Math.abs(position.y) > SPACE_SIZE / 2) position.y = -Math.sign(position.y) * SPACE_SIZE / 2;
            if (Math.abs(position.z) > SPACE_SIZE / 2) position.z = -Math.sign(position.z) * SPACE_SIZE / 2;
        });

        // Update sphere positions (gravitational interaction between spheres)
        spheres.forEach((sphere, i) => {
            let acceleration = new THREE.Vector3();
            spheres.forEach((otherSphere, j) => {
                if (i !== j) {
                    let distance = sphere.position.distanceTo(otherSphere.position);
                    if (distance > 0.1) { // Avoid division by zero
                        let direction = otherSphere.position.clone().sub(sphere.position).normalize();
                        let force = (GRAVITY_CONSTANT * otherSphere.userData.mass) / (distance * distance);
                        acceleration.add(direction.multiplyScalar(force));
                    }
                }
            });
            sphere.position.add(acceleration);
        });
    }

    controls.update();
    renderer.render(scene, camera);
}