File size: 6,648 Bytes
f63fa31
 
 
 
 
f827315
e727948
f827315
 
 
 
f63fa31
715921b
f63fa31
 
 
d8b8e62
 
 
 
 
f63fa31
d8b8e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63fa31
e727948
 
 
 
 
 
f63fa31
715921b
f63fa31
 
 
 
 
715921b
f63fa31
de78f0e
715921b
de78f0e
 
715921b
de78f0e
715921b
8091043
 
8179b58
715921b
 
 
 
 
8091043
 
 
8179b58
8091043
 
715921b
8091043
de78f0e
 
715921b
f63fa31
 
 
715921b
 
 
 
 
 
 
f63fa31
86fe81e
f63fa31
 
de78f0e
715921b
 
 
 
 
 
 
 
 
 
de78f0e
 
715921b
 
f63fa31
715921b
 
f63fa31
715921b
fdfda12
e727948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfda12
715921b
e727948
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
LOCAL_DB_DIR = "chroma_db"
RSS_FEEDS = [
    "https://www.sciencedaily.com/rss/top/science.xml",
    "https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx",
    "http://rss.cnn.com/rss/cnn_allpolitics.rss",
    "https://phys.org/rss-feed/physics-news/",
    "https://www.spaceweatherlive.com/en/news/rss",
    "https://weather.com/feeds/rss",
    "https://www.wired.com/feed/rss",
    "https://www.nasa.gov/rss/dyn/breaking_news.rss",
    "https://www.nationalgeographic.com/feed/",
    "https://www.nature.com/nature.rss",
    "https://www.scientificamerican.com/rss/",
    "https://www.newscientist.com/feed/home/",
    "https://www.livescience.com/feeds/all",
    "https://astrostyle.com/feed/",
    "https://www.vogue.com/feed/rss",
    "https://feeds.bbci.co.uk/news/politics/rss.xml",
    "https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml",
    "https://www.politico.com/rss/politics.xml",
    "https://thehill.com/feed/",
    "https://www.aps.org/publications/apsnews/updates/rss.cfm",
    "https://www.quantamagazine.org/feed/",
    "https://www.sciencedaily.com/rss/matter_energy/physics.xml",
    "https://physicsworld.com/feed/",
    "https://www.swpc.noaa.gov/rss.xml",
    "https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/",
    "https://www.weather.gov/rss",
    "https://www.foxweather.com/rss",
    "https://techcrunch.com/feed/",
    "https://arstechnica.com/feed/",
    "https://gizmodo.com/rss",
    "https://www.theverge.com/rss/index.xml",
    "https://www.space.com/feeds/all",
    "https://www.universetoday.com/feed/",
    "https://skyandtelescope.org/feed/",
    "https://www.esa.int/rss",
    "https://www.smithsonianmag.com/rss/",
    "https://www.popsci.com/rss.xml",
    "https://www.discovermagazine.com/rss",
    "https://www.atlasobscura.com/feeds/latest"
]
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"

# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()

# Initialize embedding model and vector DB
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)

def fetch_rss_feeds():
    articles = []
    seen_keys = set()
    for feed_url in RSS_FEEDS:
        try:
            logger.info(f"Fetching {feed_url}")
            feed = feedparser.parse(feed_url)
            if feed.bozo:
                logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
                continue
            for entry in feed.entries:
                title = entry.get("title", "No Title")
                link = entry.get("link", "")
                description = entry.get("summary", entry.get("description", "No Description"))
                key = f"{title}|{link}"
                if key not in seen_keys:
                    seen_keys.add(key)
                    image = (entry.get("media_content", [{}])[0].get("url") or
                             entry.get("media_thumbnail", [{}])[0].get("url") or "svg")
                    articles.append({
                        "title": title,
                        "link": link,
                        "description": description,
                        "published": entry.get("published", "Unknown Date"),
                        "category": categorize_feed(feed_url),
                        "image": image,
                    })
        except Exception as e:
            logger.error(f"Error fetching {feed_url}: {e}")
    logger.info(f"Total articles fetched: {len(articles)}")
    return articles

def categorize_feed(url):
    if "sciencedaily" in url:
        return "Science"
    elif "nasa" in url:
        return "Space"
    elif "wired" in url:
        return "Tech"
    return "Uncategorized"

def process_and_store_articles(articles):
    documents = []
    for article in articles:
        try:
            metadata = {
                "title": article["title"],
                "link": article["link"],
                "original_description": article["description"],
                "published": article["published"],
                "category": article["category"],
                "image": article["image"],
            }
            doc = Document(page_content=article["description"], metadata=metadata)
            documents.append(doc)
        except Exception as e:
            logger.error(f"Error processing article {article['title']}: {e}")
    
    if documents:
        try:
            vector_db.add_documents(documents)
            logger.info(f"Stored {len(documents)} articles in DB")
        except Exception as e:
            logger.error(f"Error storing articles: {e}")

def download_from_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        shutil.rmtree(LOCAL_DB_DIR)
    try:
        hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
        logger.info(f"Downloading Chroma DB from {REPO_ID}...")
        hf_api.download_repo(repo_id=REPO_ID, repo_type="dataset", local_dir=LOCAL_DB_DIR, token=HF_API_TOKEN)
    except Exception as e:
        logger.error(f"Error downloading from Hugging Face Hub: {e}")
        raise

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
            logger.info(f"Uploading Chroma DB to {REPO_ID}...")
            for root, _, files in os.walk(LOCAL_DB_DIR):
                for file in files:
                    local_path = os.path.join(root, file)
                    remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
                    hf_api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=remote_path,
                        repo_id=REPO_ID,
                        repo_type="dataset",
                        token=HF_API_TOKEN
                    )
            logger.info(f"Database uploaded to: {REPO_ID}")
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face Hub: {e}")
            raise

if __name__ == "__main__":
    articles = fetch_rss_feeds()
    process_and_store_articles(articles)
    upload_to_hf_hub()