File size: 6,802 Bytes
f63fa31
 
f827315
f63fa31
 
 
 
f827315
 
 
 
 
f63fa31
 
cd69f86
f63fa31
f827315
f63fa31
f827315
 
 
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f827315
 
f63fa31
 
 
 
 
 
 
 
 
 
 
f827315
 
 
 
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f827315
 
f63fa31
 
 
 
 
 
f827315
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f827315
f63fa31
 
 
 
 
 
 
 
f827315
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f827315
f63fa31
 
 
 
 
 
 
 
 
 
f827315
 
f63fa31
f827315
 
f63fa31
 
 
 
 
 
 
 
 
 
 
 
f827315
f63fa31
f827315
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import feedparser
from huggingface_hub import HfApi, InferenceClient, login
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import shutil
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Hugging Face setup
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "DEMO_HF_API_TOKEN")
HF_MODEL = "Qwen/Qwen-72B-Instruct"
REPO_ID = "broadfield-dev/news-rag-db"  # Ensure this is your repo
LOCAL_DB_DIR = "chroma_db"

# Explicitly login to Hugging Face Hub
login(token=HF_API_TOKEN)
client = InferenceClient(model=HF_MODEL, token=HF_API_TOKEN)

# RSS feeds
RSS_FEEDS = [
    "https://www.sciencedaily.com/rss/top/science.xml",
    "https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx",
    "http://rss.cnn.com/rss/cnn_allpolitics.rss",
    "https://phys.org/rss-feed/physics-news/",
    "https://www.spaceweatherlive.com/en/news/rss",
    "https://weather.com/feeds/rss",
    "https://www.wired.com/feed/rss",
    "https://www.nasa.gov/rss/dyn/breaking_news.rss",
    "https://www.nationalgeographic.com/feed/",
    "https://www.nature.com/nature.rss",
    "https://www.scientificamerican.com/rss/",
    "https://www.newscientist.com/feed/home/",
    "https://www.livescience.com/feeds/all",
    "https://www.hindustantimes.com/feed/horoscope/rss",
    "https://www.washingtonpost.com/wp-srv/style/horoscopes/rss.xml",
    "https://astrostyle.com/feed/",
    "https://www.vogue.com/feed/rss",
    "https://feeds.bbci.co.uk/news/politics/rss.xml",
    "https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml",
    "https://www.politico.com/rss/politics.xml",
    "https://thehill.com/feed/",
    "https://www.aps.org/publications/apsnews/updates/rss.cfm",
    "https://www.quantamagazine.org/feed/",
    "https://www.sciencedaily.com/rss/matter_energy/physics.xml",
    "https://physicsworld.com/feed/",
    "https://www.swpc.noaa.gov/rss.xml",
    "https://www.nasa.gov/rss/dyn/solar_system.rss",
    "https://weather.com/science/space/rss",
    "https://www.space.com/feeds/space-weather",
    "https://www.accuweather.com/en/rss",
    "https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/",
    "https://www.weather.gov/rss",
    "https://www.foxweather.com/rss",
    "https://techcrunch.com/feed/",
    "https://arstechnica.com/feed/",
    "https://gizmodo.com/rss",
    "https://www.theverge.com/rss/index.xml",
    "https://www.space.com/feeds/all",
    "https://www.universetoday.com/feed/",
    "https://skyandtelescope.org/feed/",
    "https://www.esa.int/rss",
    "https://www.smithsonianmag.com/rss/",
    "https://www.popsci.com/rss.xml",
    "https://www.discovermagazine.com/rss",
    "https://www.atlasobscura.com/feeds/latest"
]

# Embedding model and vector DB
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)
hf_api = HfApi()

def fetch_rss_feeds():
    articles = []
    for feed_url in RSS_FEEDS:
        feed = feedparser.parse(feed_url)
        for entry in feed.entries[:5]:
            image = entry.get("media_content", [{}])[0].get("url") or entry.get("media_thumbnail", [{}])[0].get("url") or None
            articles.append({
                "title": entry.get("title", "No Title"),
                "link": entry.get("link", ""),
                "description": entry.get("summary", entry.get("description", "No Description")),
                "published": entry.get("published", "Unknown Date"),
                "category": categorize_feed(feed_url),
                "image": image,
            })
    return articles

def categorize_feed(url):
    if "sciencedaily" in url or "phys.org" in url:
        return "Science & Physics"
    elif "horoscope" in url:
        return "Astrology"
    elif "politics" in url:
        return "Politics"
    elif "spaceweather" in url or "nasa" in url:
        return "Solar & Space"
    elif "weather" in url:
        return "Earth Weather"
    else:
        return "Cool Stuff"

def summarize_article(text):
    prompt = f"Summarize the following text concisely:\n\n{text}"
    try:
        response = client.text_generation(prompt, max_new_tokens=100, temperature=0.7)
        return response.strip()
    except Exception as e:
        logger.error(f"Error summarizing article: {e}")
        return "Summary unavailable"

def categorize_article(text):
    prompt = f"Classify the sentiment as positive, negative, or neutral:\n\n{text}"
    try:
        response = client.text_generation(prompt, max_new_tokens=10, temperature=0.7)
        return response.strip()
    except Exception as e:
        logger.error(f"Error categorizing article: {e}")
        return "Neutral"

def process_and_store_articles(articles):
    documents = []
    for article in articles:
        summary = summarize_article(article["description"])
        sentiment = categorize_article(article["description"])
        doc = Document(
            page_content=summary,
            metadata={
                "title": article["title"],
                "link": article["link"],
                "original_description": article["description"],
                "published": article["published"],
                "category": article["category"],
                "sentiment": sentiment,
                "image": article["image"] if article["image"] else "https://via.placeholder.com/150",
            }
        )
        documents.append(doc)
    vector_db.add_documents(documents)
    vector_db.persist()
    upload_to_hf_hub()

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
            logger.info(f"Repository {REPO_ID} created or exists.")
        except Exception as e:
            logger.error(f"Error creating repo: {e}")
            return
        for root, _, files in os.walk(LOCAL_DB_DIR):
            for file in files:
                local_path = os.path.join(root, file)
                remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
                try:
                    hf_api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=remote_path,
                        repo_id=REPO_ID,
                        repo_type="dataset",
                        token=HF_API_TOKEN
                    )
                    logger.info(f"Uploaded {file} to {REPO_ID}")
                except Exception as e:
                    logger.error(f"Error uploading file {file}: {e}")
        logger.info(f"Database uploaded to: {REPO_ID}")