File size: 6,111 Bytes
f63fa31
 
36572bc
f63fa31
 
 
 
f827315
 
 
 
 
f63fa31
 
de78f0e
 
f63fa31
f827315
36572bc
de78f0e
36572bc
f63fa31
86fe81e
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86fe81e
f63fa31
 
 
 
 
 
de78f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f63fa31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86fe81e
f63fa31
 
de78f0e
 
36572bc
de78f0e
 
 
 
 
 
 
 
 
 
 
 
f63fa31
 
de78f0e
f63fa31
 
 
 
 
f827315
 
f63fa31
f827315
 
f63fa31
 
 
 
 
 
 
 
 
fe57b98
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import feedparser
from huggingface_hub import HfApi, login
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import shutil
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Hugging Face setup
HF_API_TOKEN = os.getenv("DEMO_HF_API_TOKEN", "YOUR_HF_API_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"
LOCAL_DB_DIR = "chroma_db"

# Explicitly login to Hugging Face Hub (no InferenceClient needed anymore)
login(token=HF_API_TOKEN)
hf_api = HfApi()

# RSS feeds
RSS_FEEDS = [
    "https://www.sciencedaily.com/rss/top/science.xml",
    "https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx",
    "http://rss.cnn.com/rss/cnn_allpolitics.rss",
    "https://phys.org/rss-feed/physics-news/",
    "https://www.spaceweatherlive.com/en/news/rss",
    "https://weather.com/feeds/rss",
    "https://www.wired.com/feed/rss",
    "https://www.nasa.gov/rss/dyn/breaking_news.rss",
    "https://www.nationalgeographic.com/feed/",
    "https://www.nature.com/nature.rss",
    "https://www.scientificamerican.com/rss/",
    "https://www.newscientist.com/feed/home/",
    "https://www.livescience.com/feeds/all",
    "https://astrostyle.com/feed/",
    "https://www.vogue.com/feed/rss",
    "https://feeds.bbci.co.uk/news/politics/rss.xml",
    "https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml",
    "https://www.politico.com/rss/politics.xml",
    "https://thehill.com/feed/",
    "https://www.aps.org/publications/apsnews/updates/rss.cfm",
    "https://www.quantamagazine.org/feed/",
    "https://www.sciencedaily.com/rss/matter_energy/physics.xml",
    "https://physicsworld.com/feed/",
    "https://www.swpc.noaa.gov/rss.xml",
    "https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/",
    "https://www.weather.gov/rss",
    "https://www.foxweather.com/rss",
    "https://techcrunch.com/feed/",
    "https://arstechnica.com/feed/",
    "https://gizmodo.com/rss",
    "https://www.theverge.com/rss/index.xml",
    "https://www.space.com/feeds/all",
    "https://www.universetoday.com/feed/",
    "https://skyandtelescope.org/feed/",
    "https://www.esa.int/rss",
    "https://www.smithsonianmag.com/rss/",
    "https://www.popsci.com/rss.xml",
    "https://www.discovermagazine.com/rss",
    "https://www.atlasobscura.com/feeds/latest"
]

# Embedding model and vector DB
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)

def fetch_rss_feeds():
    articles = []
    for feed_url in RSS_FEEDS:
        try:
            logger.info(f"Fetching feed: {feed_url}")
            feed = feedparser.parse(feed_url)
            if feed.bozo:
                logger.warning(f"Failed to parse {feed_url}: {feed.bozo_exception}")
                continue
            for entry in feed.entries[:5]:
                image = entry.get("media_content", [{}])[0].get("url") or entry.get("media_thumbnail", [{}])[0].get("url") or None
                articles.append({
                    "title": entry.get("title", "No Title"),
                    "link": entry.get("link", ""),
                    "description": entry.get("summary", entry.get("description", "No Description")),
                    "published": entry.get("published", "Unknown Date"),
                    "category": categorize_feed(feed_url),
                    "image": image,
                })
            logger.info(f"Processed {len(feed.entries[:5])} entries from {feed_url}")
        except Exception as e:
            logger.error(f"Error fetching {feed_url}: {e}")
    return articles

def categorize_feed(url):
    if "sciencedaily" in url or "phys.org" in url:
        return "Science & Physics"
    elif "horoscope" in url:
        return "Astrology"
    elif "politics" in url:
        return "Politics"
    elif "spaceweather" in url or "nasa" in url:
        return "Solar & Space"
    elif "weather" in url:
        return "Earth Weather"
    else:
        return "Cool Stuff"

def process_and_store_articles(articles):
    documents = []
    for article in articles:
        try:
            doc = Document(
                page_content=article["description"],
                metadata={
                    "title": article["title"],
                    "link": article["link"],
                    "original_description": article["description"],
                    "published": article["published"],
                    "category": article["category"],
                    "image": article["image"],
                }
            )
            documents.append(doc)
        except Exception as e:
            logger.error(f"Error processing article {article['title']}: {e}")
    vector_db.add_documents(documents)
    vector_db.persist()
    logger.info("Vector DB persisted")
    upload_to_hf_hub()

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
            logger.info(f"Repository {REPO_ID} created or exists.")
        except Exception as e:
            logger.error(f"Error creating repo: {e}")
            return
        for root, _, files in os.walk(LOCAL_DB_DIR):
            for file in files:
                local_path = os.path.join(root, file)
                remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
                try:
                    hf_api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=remote_path,
                        repo_id=REPO_ID,
                        repo_type="dataset",
                        token=HF_API_TOKEN
                    )
                    logger.info(f"Uploaded {file} to {REPO_ID}")
                except Exception as e:
                    logger.error(f"Error uploading file {file}: {e}")
        logger.info(f"Database uploaded to: {REPO_ID}")