grok_test / app.py
broadfield-dev's picture
Update app.py
5d47c6a verified
raw
history blame
3.94 kB
import os
from flask import Flask, render_template, request, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
import logging
app = Flask(__name__)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@app.route('/')
def index():
try:
# Fetch and store articles synchronously on first load
articles = fetch_rss_feeds()
logger.info(f"Fetched {len(articles)} articles")
process_and_store_articles(articles)
logger.info("Articles processed and stored")
# Retrieve all articles from Chroma DB
all_docs = vector_db.get(include=['documents', 'metadatas'])
if not all_docs.get('metadatas'):
logger.warning("No articles in DB yet")
return render_template("index.html", categorized_articles={}, has_articles=False)
# Process retrieved documents
enriched_articles = []
seen_keys = set()
for doc, meta in zip(all_docs['documents'], all_docs['metadatas']):
if not meta:
continue
title = meta.get("title", "No Title")
link = meta.get("link", "")
description = meta.get("original_description", "No Description")
key = f"{title}|{link}"
if key not in seen_keys:
seen_keys.add(key)
enriched_articles.append({
"title": title,
"link": link,
"description": description,
"category": meta.get("category", "Uncategorized"),
"published": meta.get("published", "Unknown Date"),
"image": meta.get("image", "svg"),
})
logger.info(f"Displaying {len(enriched_articles)} unique articles")
# Categorize articles
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
return render_template("index.html", categorized_articles=categorized_articles, has_articles=True)
except Exception as e:
logger.error(f"Error in index: {e}")
return render_template("index.html", categorized_articles={}, has_articles=False)
@app.route('/search', methods=['POST'])
def search():
query = request.form.get('search')
if not query:
return render_template("index.html", categorized_articles={}, has_articles=False)
try:
logger.info(f"Searching for: {query}")
results = vector_db.similarity_search(query, k=10)
enriched_articles = []
seen_keys = set()
for doc in results:
meta = doc.metadata
title = meta.get("title", "No Title")
link = meta.get("link", "")
description = meta.get("original_description", "No Description")
key = f"{title}|{link}"
if key not in seen_keys:
seen_keys.add(key)
enriched_articles.append({
"title": title,
"link": link,
"description": description,
"category": meta.get("category", "Uncategorized"),
"published": meta.get("published", "Unknown Date"),
"image": meta.get("image", "svg"),
})
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
return render_template("index.html", categorized_articles=categorized_articles, has_articles=bool(enriched_articles))
except Exception as e:
logger.error(f"Search error: {e}")
return render_template("index.html", categorized_articles={}, has_articles=False)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)