Spaces:
Running
Running
import os | |
from flask import Flask, render_template, request | |
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db | |
app = Flask(__name__) | |
def index(): | |
articles = fetch_rss_feeds() | |
process_and_store_articles(articles) | |
stored_docs = vector_db.similarity_search("news", k=len(articles)) | |
enriched_articles = [ | |
{ | |
"title": doc.metadata["title"], | |
"link": doc.metadata["link"], | |
"summary": doc.page_content, | |
"category": doc.metadata["category"], | |
"sentiment": doc.metadata["sentiment"], | |
"published": doc.metadata["published"], | |
} | |
for doc in stored_docs | |
] | |
if request.method == 'POST': | |
query = request.form.get('search') | |
if query: | |
results = vector_db.similarity_search(query, k=10) | |
enriched_articles = [ | |
{ | |
"title": doc.metadata["title"], | |
"link": doc.metadata["link"], | |
"summary": doc.page_content, | |
"category": doc.metadata["category"], | |
"sentiment": doc.metadata["sentiment"], | |
"published": doc.metadata["published"], | |
} | |
for doc in results | |
] | |
categorized_articles = {} | |
for article in enriched_articles: | |
cat = article["category"] | |
if cat not in categorized_articles: | |
categorized_articles[cat] = [] | |
categorized_articles[cat].append(article) | |
return render_template("index.html", categorized_articles=categorized_articles) | |
if __name__ == "__main__": | |
app.run(host="0.0.0.0", port=7860) |