Spaces:
Running
Running
import os | |
import feedparser | |
from huggingface_hub import HfApi, InferenceClient | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.docstore.document import Document | |
import shutil | |
# Hugging Face setup | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "YOUR_HF_API_TOKEN") | |
HF_MODEL = "Qwen/Qwen-72B-Instruct" | |
REPO_ID = "broadfield-dev/news-rag-db" | |
LOCAL_DB_DIR = "chroma_db" | |
client = InferenceClient(model=HF_MODEL, token=HF_API_TOKEN) | |
# RSS feeds | |
RSS_FEEDS = [ | |
"https://www.sciencedaily.com/rss/top/science.xml", | |
"https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx", | |
"http://rss.cnn.com/rss/cnn_allpolitics.rss", | |
"https://phys.org/rss-feed/physics-news/", | |
"https://www.spaceweatherlive.com/en/news/rss", | |
"https://weather.com/feeds/rss", | |
"https://www.wired.com/feed/rss", | |
"https://www.nasa.gov/rss/dyn/breaking_news.rss", | |
"https://www.nationalgeographic.com/feed/", | |
"https://www.nature.com/nature.rss", | |
"https://www.scientificamerican.com/rss/", | |
"https://www.newscientist.com/feed/home/", | |
"https://www.livescience.com/feeds/all", | |
"https://astrostyle.com/feed/", | |
"https://www.vogue.com/feed/rss", | |
"https://feeds.bbci.co.uk/news/politics/rss.xml", | |
"https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml", | |
"https://www.politico.com/rss/politics.xml", | |
"https://thehill.com/feed/", | |
"https://www.aps.org/publications/apsnews/updates/rss.cfm", | |
"https://www.quantamagazine.org/feed/", | |
"https://www.sciencedaily.com/rss/matter_energy/physics.xml", | |
"https://physicsworld.com/feed/", | |
"https://www.swpc.noaa.gov/rss.xml", | |
"https://www.nasa.gov/rss/dyn/solar_system.rss", | |
"https://weather.com/science/space/rss", | |
"https://www.space.com/feeds/space-weather", | |
"https://www.accuweather.com/en/rss", | |
"https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/", | |
"https://www.weather.gov/rss", | |
"https://www.foxweather.com/rss", | |
"https://techcrunch.com/feed/", | |
"https://arstechnica.com/feed/", | |
"https://gizmodo.com/rss", | |
"https://www.theverge.com/rss/index.xml", | |
"https://www.space.com/feeds/all", | |
"https://www.universetoday.com/feed/", | |
"https://skyandtelescope.org/feed/", | |
"https://www.esa.int/rss", | |
"https://www.smithsonianmag.com/rss/", | |
"https://www.popsci.com/rss.xml", | |
"https://www.discovermagazine.com/rss", | |
"https://www.atlasobscura.com/feeds/latest" | |
] | |
# Embedding model and vector DB | |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model) | |
hf_api = HfApi() | |
def fetch_rss_feeds(): | |
articles = [] | |
for feed_url in RSS_FEEDS: | |
print('processing ', feed_url) | |
feed = feedparser.parse(feed_url) | |
for entry in feed.entries[:5]: # Limit to 5 per feed | |
articles.append({ | |
"title": entry.get("title", "No Title"), | |
"link": entry.get("link", ""), | |
"description": entry.get("summary", entry.get("description", "No Description")), | |
"published": entry.get("published", "Unknown Date"), | |
"category": categorize_feed(feed_url), | |
}) | |
print(entry) | |
return articles | |
def categorize_feed(url): | |
if "sciencedaily" in url or "phys.org" in url: | |
return "Science & Physics" | |
elif "horoscope" in url: | |
return "Astrology" | |
elif "politics" in url: | |
return "Politics" | |
elif "spaceweather" in url or "nasa" in url: | |
return "Solar & Space" | |
elif "weather" in url: | |
return "Earth Weather" | |
else: | |
return "Cool Stuff" | |
def summarize_article(text): | |
prompt = f"Summarize the following text concisely:\n\n{text}" | |
try: | |
response = client.text_generation(prompt, max_new_tokens=100, temperature=0.7) | |
return response.strip() | |
except Exception as e: | |
print(f"Error summarizing article: {e}") | |
return "Summary unavailable" | |
def categorize_article(text): | |
prompt = f"Classify the sentiment as positive, negative, or neutral:\n\n{text}" | |
try: | |
response = client.text_generation(prompt, max_new_tokens=10, temperature=0.7) | |
return response.strip() | |
except Exception as e: | |
print(f"Error categorizing article: {e}") | |
return "Neutral" | |
def process_and_store_articles(articles): | |
documents = [] | |
for article in articles: | |
summary = summarize_article(article["description"]) | |
sentiment = categorize_article(article["description"]) | |
doc = Document( | |
page_content=summary, | |
metadata={ | |
"title": article["title"], | |
"link": article["link"], | |
"original_description": article["description"], | |
"published": article["published"], | |
"category": article["category"], | |
"sentiment": sentiment, | |
} | |
) | |
documents.append(doc) | |
vector_db.add_documents(documents) | |
vector_db.persist() | |
upload_to_hf_hub() | |
def upload_to_hf_hub(): | |
if os.path.exists(LOCAL_DB_DIR): | |
try: | |
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True) | |
except Exception as e: | |
print(f"Error creating repo: {e}") | |
for root, _, files in os.walk(LOCAL_DB_DIR): | |
for file in files: | |
local_path = os.path.join(root, file) | |
remote_path = os.path.relpath(local_path, LOCAL_DB_DIR) | |
try: | |
hf_api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=remote_path, | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
token=HF_API_TOKEN | |
) | |
except Exception as e: | |
print(f"Error uploading file {file}: {e}") | |
print(f"Database uploaded to: {REPO_ID}") |