Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import os
|
2 |
-
from flask import Flask, render_template, request, Response
|
3 |
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
4 |
import logging
|
5 |
import time
|
|
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
@@ -10,13 +11,8 @@ app = Flask(__name__)
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
return render_template("loading.html")
|
16 |
-
|
17 |
-
@app.route('/load_feeds', methods=['GET'])
|
18 |
-
def load_feeds():
|
19 |
-
logger.info("Starting to fetch and process RSS feeds")
|
20 |
start_time = time.time()
|
21 |
articles = fetch_rss_feeds()
|
22 |
logger.info(f"Fetched {len(articles)} articles")
|
@@ -24,19 +20,50 @@ def load_feeds():
|
|
24 |
logger.info("Articles processed and stored")
|
25 |
end_time = time.time()
|
26 |
logger.info(f"RSS feed loading took {end_time - start_time:.2f} seconds")
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@app.route('/index', methods=['GET'])
|
30 |
def index():
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
unique_articles = {}
|
34 |
for doc in stored_docs:
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
if key not in unique_articles:
|
37 |
unique_articles[key] = {
|
38 |
-
"title":
|
39 |
-
"link":
|
40 |
"description": doc.metadata["original_description"],
|
41 |
"category": doc.metadata["category"],
|
42 |
"published": doc.metadata["published"],
|
@@ -52,11 +79,15 @@ def index():
|
|
52 |
results = vector_db.similarity_search(query, k=10)
|
53 |
unique_search_articles = {}
|
54 |
for doc in results:
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
if key not in unique_search_articles:
|
57 |
unique_search_articles[key] = {
|
58 |
-
"title":
|
59 |
-
"link":
|
60 |
"description": doc.metadata["original_description"],
|
61 |
"category": doc.metadata["category"],
|
62 |
"published": doc.metadata["published"],
|
|
|
1 |
import os
|
2 |
+
from flask import Flask, render_template, request, Response, jsonify
|
3 |
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
4 |
import logging
|
5 |
import time
|
6 |
+
from threading import Thread
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
def load_feeds_in_background():
|
15 |
+
logger.info("Starting to fetch and process RSS feeds in background")
|
|
|
|
|
|
|
|
|
|
|
16 |
start_time = time.time()
|
17 |
articles = fetch_rss_feeds()
|
18 |
logger.info(f"Fetched {len(articles)} articles")
|
|
|
20 |
logger.info("Articles processed and stored")
|
21 |
end_time = time.time()
|
22 |
logger.info(f"RSS feed loading took {end_time - start_time:.2f} seconds")
|
23 |
+
|
24 |
+
@app.route('/')
|
25 |
+
def loading():
|
26 |
+
# Start loading feeds in a background thread
|
27 |
+
thread = Thread(target=load_feeds_in_background)
|
28 |
+
thread.daemon = True
|
29 |
+
thread.start()
|
30 |
+
return render_template("loading.html")
|
31 |
+
|
32 |
+
@app.route('/check_feeds', methods=['GET'])
|
33 |
+
def check_feeds():
|
34 |
+
try:
|
35 |
+
# Check if vector DB has documents (simplified check)
|
36 |
+
docs = vector_db.similarity_search("news", k=1)
|
37 |
+
if docs:
|
38 |
+
return jsonify({"status": "loaded"})
|
39 |
+
return jsonify({"status": "loading"}), 202
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Error checking feeds: {e}")
|
42 |
+
return jsonify({"status": "error", "message": str(e)}), 500
|
43 |
|
44 |
@app.route('/index', methods=['GET'])
|
45 |
def index():
|
46 |
+
# Poll until feeds are loaded
|
47 |
+
while True:
|
48 |
+
response = check_feeds()
|
49 |
+
if response.status_code == 200 and response.get_json()["status"] == "loaded":
|
50 |
+
break
|
51 |
+
time.sleep(1) # Check every second
|
52 |
+
|
53 |
+
stored_docs = vector_db.similarity_search("news", k=1000) # Increased k for all unique articles
|
54 |
+
# Use a set to ensure unique articles by title, link, and description hash
|
55 |
unique_articles = {}
|
56 |
for doc in stored_docs:
|
57 |
+
import hashlib
|
58 |
+
title = doc.metadata["title"]
|
59 |
+
link = doc.metadata["link"]
|
60 |
+
desc = doc.metadata["original_description"]
|
61 |
+
desc_hash = hashlib.md5(desc.encode()).hexdigest()[:10] # Short hash for uniqueness
|
62 |
+
key = f"{title}|{link}|{desc_hash}"
|
63 |
if key not in unique_articles:
|
64 |
unique_articles[key] = {
|
65 |
+
"title": title,
|
66 |
+
"link": link,
|
67 |
"description": doc.metadata["original_description"],
|
68 |
"category": doc.metadata["category"],
|
69 |
"published": doc.metadata["published"],
|
|
|
79 |
results = vector_db.similarity_search(query, k=10)
|
80 |
unique_search_articles = {}
|
81 |
for doc in results:
|
82 |
+
title = doc.metadata["title"]
|
83 |
+
link = doc.metadata["link"]
|
84 |
+
desc = doc.metadata["original_description"]
|
85 |
+
desc_hash = hashlib.md5(desc.encode()).hexdigest()[:10]
|
86 |
+
key = f"{title}|{link}|{desc_hash}"
|
87 |
if key not in unique_search_articles:
|
88 |
unique_search_articles[key] = {
|
89 |
+
"title": title,
|
90 |
+
"link": link,
|
91 |
"description": doc.metadata["original_description"],
|
92 |
"category": doc.metadata["category"],
|
93 |
"published": doc.metadata["published"],
|