Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
-
from flask import Flask, render_template, request
|
3 |
-
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
4 |
import logging
|
5 |
|
6 |
app = Flask(__name__)
|
@@ -14,14 +14,14 @@ def index():
|
|
14 |
logger.info("Starting to fetch RSS feeds")
|
15 |
articles = fetch_rss_feeds()
|
16 |
logger.info(f"Fetched {len(articles)} articles")
|
17 |
-
process_and_store_articles(articles)
|
18 |
logger.info("Articles processed and stored")
|
19 |
stored_docs = vector_db.similarity_search("news", k=len(articles))
|
20 |
enriched_articles = [
|
21 |
{
|
22 |
"title": doc.metadata["title"],
|
23 |
"link": doc.metadata["link"],
|
24 |
-
"
|
25 |
"category": doc.metadata["category"],
|
26 |
"sentiment": doc.metadata["sentiment"],
|
27 |
"published": doc.metadata["published"],
|
@@ -40,7 +40,7 @@ def index():
|
|
40 |
{
|
41 |
"title": doc.metadata["title"],
|
42 |
"link": doc.metadata["link"],
|
43 |
-
"
|
44 |
"category": doc.metadata["category"],
|
45 |
"sentiment": doc.metadata["sentiment"],
|
46 |
"published": doc.metadata["published"],
|
@@ -48,7 +48,7 @@ def index():
|
|
48 |
}
|
49 |
for doc in results
|
50 |
]
|
51 |
-
logger.info(f"Search returned {len(enriched_articles)} results
|
52 |
|
53 |
categorized_articles = {}
|
54 |
for article in enriched_articles:
|
@@ -59,14 +59,5 @@ def index():
|
|
59 |
|
60 |
return render_template("index.html", categorized_articles=categorized_articles)
|
61 |
|
62 |
-
@app.route('/summarize', methods=['POST'])
|
63 |
-
def summarize():
|
64 |
-
data = request.get_json()
|
65 |
-
text = data.get('text')
|
66 |
-
logger.info(f"Received summarize request for text: {text[:50]}...")
|
67 |
-
summary = summarize_article(text)
|
68 |
-
logger.info(f"Generated summary: {summary}")
|
69 |
-
return jsonify({"summary": summary})
|
70 |
-
|
71 |
if __name__ == "__main__":
|
72 |
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
+
from flask import Flask, render_template, request
|
3 |
+
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
|
4 |
import logging
|
5 |
|
6 |
app = Flask(__name__)
|
|
|
14 |
logger.info("Starting to fetch RSS feeds")
|
15 |
articles = fetch_rss_feeds()
|
16 |
logger.info(f"Fetched {len(articles)} articles")
|
17 |
+
process_and_store_articles(articles)
|
18 |
logger.info("Articles processed and stored")
|
19 |
stored_docs = vector_db.similarity_search("news", k=len(articles))
|
20 |
enriched_articles = [
|
21 |
{
|
22 |
"title": doc.metadata["title"],
|
23 |
"link": doc.metadata["link"],
|
24 |
+
"description": doc.metadata["original_description"], # Use original description
|
25 |
"category": doc.metadata["category"],
|
26 |
"sentiment": doc.metadata["sentiment"],
|
27 |
"published": doc.metadata["published"],
|
|
|
40 |
{
|
41 |
"title": doc.metadata["title"],
|
42 |
"link": doc.metadata["link"],
|
43 |
+
"description": doc.metadata["original_description"],
|
44 |
"category": doc.metadata["category"],
|
45 |
"sentiment": doc.metadata["sentiment"],
|
46 |
"published": doc.metadata["published"],
|
|
|
48 |
}
|
49 |
for doc in results
|
50 |
]
|
51 |
+
logger.info(f"Search returned {len(enriched_articles)} results")
|
52 |
|
53 |
categorized_articles = {}
|
54 |
for article in enriched_articles:
|
|
|
59 |
|
60 |
return render_template("index.html", categorized_articles=categorized_articles)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if __name__ == "__main__":
|
63 |
app.run(debug=True, host="0.0.0.0", port=7860)
|