Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import feedparser
|
3 |
-
from flask import Flask, render_template
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
from langchain_huggingface import HuggingFaceInferenceClient
|
6 |
from langchain.vectorstores import Chroma
|
@@ -14,62 +14,74 @@ app = Flask(__name__)
|
|
14 |
|
15 |
# Hugging Face setup
|
16 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
17 |
-
HF_MODEL = "Qwen/Qwen-72B-Instruct"
|
18 |
-
REPO_ID = "your-username/news-rag-db"
|
19 |
LOCAL_DB_DIR = "chroma_db"
|
20 |
client = HuggingFaceInferenceClient(model=HF_MODEL, api_key=HF_API_TOKEN)
|
21 |
|
22 |
-
# RSS feeds
|
23 |
RSS_FEEDS = [
|
24 |
-
"
|
25 |
-
"https://
|
26 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
]
|
28 |
|
29 |
-
# Embedding model
|
30 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
31 |
-
|
32 |
-
# Initialize Chroma DB
|
33 |
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)
|
34 |
-
|
35 |
-
# HfApi for Hugging Face Hub
|
36 |
hf_api = HfApi()
|
37 |
|
38 |
def fetch_rss_feeds():
|
39 |
-
"""Fetch news articles from RSS feeds."""
|
40 |
articles = []
|
41 |
for feed_url in RSS_FEEDS:
|
42 |
feed = feedparser.parse(feed_url)
|
43 |
-
for entry in feed.entries[:5]: # Limit to 5
|
44 |
articles.append({
|
45 |
"title": entry.get("title", "No Title"),
|
46 |
"link": entry.get("link", ""),
|
47 |
"description": entry.get("summary", entry.get("description", "No Description")),
|
48 |
"published": entry.get("published", "Unknown Date"),
|
|
|
49 |
})
|
50 |
return articles
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def summarize_article(text):
|
53 |
-
"
|
54 |
-
prompt = f"Summarize the following text in a concise manner:\n\n{text}"
|
55 |
response = client.generate(prompt, max_new_tokens=100, temperature=0.7)
|
56 |
return response.generated_text.strip()
|
57 |
|
58 |
def categorize_article(text):
|
59 |
-
"
|
60 |
-
prompt = f"Classify the sentiment of the following text as positive, negative, or neutral:\n\n{text}"
|
61 |
response = client.generate(prompt, max_new_tokens=10, temperature=0.7)
|
62 |
return response.generated_text.strip()
|
63 |
|
64 |
def process_and_store_articles(articles):
|
65 |
-
"""Process articles: summarize, categorize, vectorize, and store in RAG DB."""
|
66 |
documents = []
|
67 |
for article in articles:
|
68 |
-
# Summarize and categorize
|
69 |
summary = summarize_article(article["description"])
|
70 |
-
|
71 |
-
|
72 |
-
# Create document with metadata
|
73 |
doc = Document(
|
74 |
page_content=summary,
|
75 |
metadata={
|
@@ -77,28 +89,21 @@ def process_and_store_articles(articles):
|
|
77 |
"link": article["link"],
|
78 |
"original_description": article["description"],
|
79 |
"published": article["published"],
|
80 |
-
"category": category,
|
|
|
81 |
}
|
82 |
)
|
83 |
documents.append(doc)
|
84 |
-
|
85 |
-
# Vectorize and store in Chroma DB
|
86 |
vector_db.add_documents(documents)
|
87 |
vector_db.persist()
|
88 |
-
|
89 |
-
# Upload to Hugging Face Hub
|
90 |
upload_to_hf_hub()
|
91 |
|
92 |
def upload_to_hf_hub():
|
93 |
-
"""Upload the Chroma DB to Hugging Face Hub."""
|
94 |
if os.path.exists(LOCAL_DB_DIR):
|
95 |
-
# Check if repo exists, create if not
|
96 |
try:
|
97 |
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
|
98 |
except Exception as e:
|
99 |
print(f"Error creating repo: {e}")
|
100 |
-
|
101 |
-
# Upload all files in the DB directory
|
102 |
for root, _, files in os.walk(LOCAL_DB_DIR):
|
103 |
for file in files:
|
104 |
local_path = os.path.join(root, file)
|
@@ -110,50 +115,149 @@ def upload_to_hf_hub():
|
|
110 |
repo_type="dataset",
|
111 |
token=HF_API_TOKEN
|
112 |
)
|
113 |
-
print(f"Database uploaded to
|
114 |
|
115 |
-
@app.route('/')
|
116 |
def index():
|
117 |
-
"""Render the Flask frontend with news articles."""
|
118 |
articles = fetch_rss_feeds()
|
119 |
process_and_store_articles(articles)
|
120 |
-
|
121 |
-
# Retrieve summaries from the vector DB for display
|
122 |
stored_docs = vector_db.similarity_search("news", k=len(articles))
|
123 |
-
enriched_articles = [
|
124 |
-
|
125 |
-
enriched_articles.append({
|
126 |
"title": doc.metadata["title"],
|
127 |
"link": doc.metadata["link"],
|
128 |
"summary": doc.page_content,
|
129 |
"category": doc.metadata["category"],
|
|
|
130 |
"published": doc.metadata["published"],
|
131 |
-
}
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
HTML_TEMPLATE = """
|
137 |
<!DOCTYPE html>
|
138 |
-
<html>
|
139 |
<head>
|
140 |
-
<
|
|
|
|
|
141 |
<style>
|
142 |
-
body {
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
</style>
|
148 |
</head>
|
149 |
<body>
|
150 |
-
<h1>
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
</div>
|
158 |
{% endfor %}
|
159 |
</body>
|
@@ -161,14 +265,9 @@ HTML_TEMPLATE = """
|
|
161 |
"""
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
-
# Save the HTML template to the templates folder
|
165 |
os.makedirs("templates", exist_ok=True)
|
166 |
with open("templates/index.html", "w") as f:
|
167 |
f.write(HTML_TEMPLATE)
|
168 |
-
|
169 |
-
# Clear existing DB for fresh start (optional)
|
170 |
if os.path.exists(LOCAL_DB_DIR):
|
171 |
shutil.rmtree(LOCAL_DB_DIR)
|
172 |
-
|
173 |
-
# Run Flask app
|
174 |
-
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import feedparser
|
3 |
+
from flask import Flask, render_template, request
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
from langchain_huggingface import HuggingFaceInferenceClient
|
6 |
from langchain.vectorstores import Chroma
|
|
|
14 |
|
15 |
# Hugging Face setup
|
16 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "YOUR_HF_API_TOKEN")
|
17 |
+
HF_MODEL = "Qwen/Qwen-72B-Instruct"
|
18 |
+
REPO_ID = "your-username/news-rag-db"
|
19 |
LOCAL_DB_DIR = "chroma_db"
|
20 |
client = HuggingFaceInferenceClient(model=HF_MODEL, api_key=HF_API_TOKEN)
|
21 |
|
22 |
+
# Updated RSS feeds
|
23 |
RSS_FEEDS = [
|
24 |
+
"https://www.sciencedaily.com/rss/top/science.xml",
|
25 |
+
"https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx",
|
26 |
+
"http://rss.cnn.com/rss/cnn_allpolitics.rss",
|
27 |
+
"https://phys.org/rss-feed/physics-news/",
|
28 |
+
"https://www.spaceweatherlive.com/en/news/rss",
|
29 |
+
"https://weather.com/feeds/rss",
|
30 |
+
"https://www.wired.com/feed/rss",
|
31 |
+
"https://www.nasa.gov/rss/dyn/breaking_news.rss",
|
32 |
+
"https://www.nationalgeographic.com/feed/",
|
33 |
+
# Add more from the list above as needed
|
34 |
]
|
35 |
|
36 |
+
# Embedding model
|
37 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
38 |
vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model)
|
|
|
|
|
39 |
hf_api = HfApi()
|
40 |
|
41 |
def fetch_rss_feeds():
|
|
|
42 |
articles = []
|
43 |
for feed_url in RSS_FEEDS:
|
44 |
feed = feedparser.parse(feed_url)
|
45 |
+
for entry in feed.entries[:5]: # Limit to 5 per feed
|
46 |
articles.append({
|
47 |
"title": entry.get("title", "No Title"),
|
48 |
"link": entry.get("link", ""),
|
49 |
"description": entry.get("summary", entry.get("description", "No Description")),
|
50 |
"published": entry.get("published", "Unknown Date"),
|
51 |
+
"category": categorize_feed(feed_url),
|
52 |
})
|
53 |
return articles
|
54 |
|
55 |
+
def categorize_feed(url):
|
56 |
+
"""Simple categorization based on URL."""
|
57 |
+
if "sciencedaily" in url or "phys.org" in url:
|
58 |
+
return "Science & Physics"
|
59 |
+
elif "horoscope" in url:
|
60 |
+
return "Astrology"
|
61 |
+
elif "politics" in url:
|
62 |
+
return "Politics"
|
63 |
+
elif "spaceweather" in url or "nasa" in url:
|
64 |
+
return "Solar & Space"
|
65 |
+
elif "weather" in url:
|
66 |
+
return "Earth Weather"
|
67 |
+
else:
|
68 |
+
return "Cool Stuff"
|
69 |
+
|
70 |
def summarize_article(text):
|
71 |
+
prompt = f"Summarize the following text concisely:\n\n{text}"
|
|
|
72 |
response = client.generate(prompt, max_new_tokens=100, temperature=0.7)
|
73 |
return response.generated_text.strip()
|
74 |
|
75 |
def categorize_article(text):
|
76 |
+
prompt = f"Classify the sentiment as positive, negative, or neutral:\n\n{text}"
|
|
|
77 |
response = client.generate(prompt, max_new_tokens=10, temperature=0.7)
|
78 |
return response.generated_text.strip()
|
79 |
|
80 |
def process_and_store_articles(articles):
|
|
|
81 |
documents = []
|
82 |
for article in articles:
|
|
|
83 |
summary = summarize_article(article["description"])
|
84 |
+
sentiment = categorize_article(article["description"])
|
|
|
|
|
85 |
doc = Document(
|
86 |
page_content=summary,
|
87 |
metadata={
|
|
|
89 |
"link": article["link"],
|
90 |
"original_description": article["description"],
|
91 |
"published": article["published"],
|
92 |
+
"category": article["category"],
|
93 |
+
"sentiment": sentiment,
|
94 |
}
|
95 |
)
|
96 |
documents.append(doc)
|
|
|
|
|
97 |
vector_db.add_documents(documents)
|
98 |
vector_db.persist()
|
|
|
|
|
99 |
upload_to_hf_hub()
|
100 |
|
101 |
def upload_to_hf_hub():
|
|
|
102 |
if os.path.exists(LOCAL_DB_DIR):
|
|
|
103 |
try:
|
104 |
hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True)
|
105 |
except Exception as e:
|
106 |
print(f"Error creating repo: {e}")
|
|
|
|
|
107 |
for root, _, files in os.walk(LOCAL_DB_DIR):
|
108 |
for file in files:
|
109 |
local_path = os.path.join(root, file)
|
|
|
115 |
repo_type="dataset",
|
116 |
token=HF_API_TOKEN
|
117 |
)
|
118 |
+
print(f"Database uploaded to: {REPO_ID}")
|
119 |
|
120 |
+
@app.route('/', methods=['GET', 'POST'])
|
121 |
def index():
|
|
|
122 |
articles = fetch_rss_feeds()
|
123 |
process_and_store_articles(articles)
|
|
|
|
|
124 |
stored_docs = vector_db.similarity_search("news", k=len(articles))
|
125 |
+
enriched_articles = [
|
126 |
+
{
|
|
|
127 |
"title": doc.metadata["title"],
|
128 |
"link": doc.metadata["link"],
|
129 |
"summary": doc.page_content,
|
130 |
"category": doc.metadata["category"],
|
131 |
+
"sentiment": doc.metadata["sentiment"],
|
132 |
"published": doc.metadata["published"],
|
133 |
+
}
|
134 |
+
for doc in stored_docs
|
135 |
+
]
|
136 |
+
|
137 |
+
if request.method == 'POST':
|
138 |
+
query = request.form.get('search')
|
139 |
+
if query:
|
140 |
+
results = vector_db.similarity_search(query, k=10)
|
141 |
+
enriched_articles = [
|
142 |
+
{
|
143 |
+
"title": doc.metadata["title"],
|
144 |
+
"link": doc.metadata["link"],
|
145 |
+
"summary": doc.page_content,
|
146 |
+
"category": doc.metadata["category"],
|
147 |
+
"sentiment": doc.metadata["sentiment"],
|
148 |
+
"published": doc.metadata["published"],
|
149 |
+
}
|
150 |
+
for doc in results
|
151 |
+
]
|
152 |
|
153 |
+
# Organize by category
|
154 |
+
categorized_articles = {}
|
155 |
+
for article in enriched_articles:
|
156 |
+
cat = article["category"]
|
157 |
+
if cat not in categorized_articles:
|
158 |
+
categorized_articles[cat] = []
|
159 |
+
categorized_articles[cat].append(article)
|
160 |
+
|
161 |
+
return render_template("index.html", categorized_articles=categorized_articles)
|
162 |
+
|
163 |
+
# Updated HTML template
|
164 |
HTML_TEMPLATE = """
|
165 |
<!DOCTYPE html>
|
166 |
+
<html lang="en">
|
167 |
<head>
|
168 |
+
<meta charset="UTF-8">
|
169 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
170 |
+
<title>News Feed Hub</title>
|
171 |
<style>
|
172 |
+
body {
|
173 |
+
font-family: 'Arial', sans-serif;
|
174 |
+
margin: 0;
|
175 |
+
padding: 20px;
|
176 |
+
background-color: #f4f4f9;
|
177 |
+
color: #333;
|
178 |
+
}
|
179 |
+
h1 {
|
180 |
+
text-align: center;
|
181 |
+
color: #2c3e50;
|
182 |
+
}
|
183 |
+
.search-container {
|
184 |
+
text-align: center;
|
185 |
+
margin: 20px 0;
|
186 |
+
}
|
187 |
+
.search-bar {
|
188 |
+
width: 50%;
|
189 |
+
padding: 12px;
|
190 |
+
font-size: 16px;
|
191 |
+
border: 2px solid #3498db;
|
192 |
+
border-radius: 25px;
|
193 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
194 |
+
outline: none;
|
195 |
+
transition: border-color 0.3s;
|
196 |
+
}
|
197 |
+
.search-bar:focus {
|
198 |
+
border-color: #2980b9;
|
199 |
+
}
|
200 |
+
.category-section {
|
201 |
+
margin: 30px 0;
|
202 |
+
}
|
203 |
+
.category-title {
|
204 |
+
background-color: #3498db;
|
205 |
+
color: white;
|
206 |
+
padding: 10px;
|
207 |
+
border-radius: 5px;
|
208 |
+
font-size: 1.4em;
|
209 |
+
}
|
210 |
+
.article {
|
211 |
+
background-color: white;
|
212 |
+
padding: 15px;
|
213 |
+
margin: 10px 0;
|
214 |
+
border-radius: 8px;
|
215 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
216 |
+
transition: transform 0.2s;
|
217 |
+
}
|
218 |
+
.article:hover {
|
219 |
+
transform: translateY(-3px);
|
220 |
+
}
|
221 |
+
.title a {
|
222 |
+
font-size: 1.2em;
|
223 |
+
color: #2c3e50;
|
224 |
+
text-decoration: none;
|
225 |
+
}
|
226 |
+
.title a:hover {
|
227 |
+
color: #3498db;
|
228 |
+
}
|
229 |
+
.summary {
|
230 |
+
color: #555;
|
231 |
+
margin: 5px 0;
|
232 |
+
}
|
233 |
+
.sentiment {
|
234 |
+
font-style: italic;
|
235 |
+
color: #7f8c8d;
|
236 |
+
}
|
237 |
+
.published {
|
238 |
+
font-size: 0.9em;
|
239 |
+
color: #95a5a6;
|
240 |
+
}
|
241 |
</style>
|
242 |
</head>
|
243 |
<body>
|
244 |
+
<h1>News Feed Hub</h1>
|
245 |
+
<div class="search-container">
|
246 |
+
<form method="POST">
|
247 |
+
<input type="text" name="search" class="search-bar" placeholder="Search news semantically...">
|
248 |
+
</form>
|
249 |
+
</div>
|
250 |
+
{% for category, articles in categorized_articles.items() %}
|
251 |
+
<div class="category-section">
|
252 |
+
<div class="category-title">{{ category }}</div>
|
253 |
+
{% for article in articles %}
|
254 |
+
<div class="article">
|
255 |
+
<div class="title"><a href="{{ article.link }}" target="_blank">{{ article.title }}</a></div>
|
256 |
+
<div class="summary">{{ article.summary }}</div>
|
257 |
+
<div class="sentiment">Sentiment: {{ article.sentiment }}</div>
|
258 |
+
<div class="published">Published: {{ article.published }}</div>
|
259 |
+
</div>
|
260 |
+
{% endfor %}
|
261 |
</div>
|
262 |
{% endfor %}
|
263 |
</body>
|
|
|
265 |
"""
|
266 |
|
267 |
if __name__ == "__main__":
|
|
|
268 |
os.makedirs("templates", exist_ok=True)
|
269 |
with open("templates/index.html", "w") as f:
|
270 |
f.write(HTML_TEMPLATE)
|
|
|
|
|
271 |
if os.path.exists(LOCAL_DB_DIR):
|
272 |
shutil.rmtree(LOCAL_DB_DIR)
|
273 |
+
app.run(host="0.0.0.0", port=7560)
|
|
|
|