import os import feedparser from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document import logging # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants LOCAL_DB_DIR = "chroma_db" RSS_FEEDS = [ "https://www.sciencedaily.com/rss/top/science.xml", "https://www.horoscope.com/us/horoscopes/general/rss/horoscope-rss.aspx", "http://rss.cnn.com/rss/cnn_allpolitics.rss", "https://phys.org/rss-feed/physics-news/", "https://www.spaceweatherlive.com/en/news/rss", "https://weather.com/feeds/rss", "https://www.wired.com/feed/rss", "https://www.nasa.gov/rss/dyn/breaking_news.rss", "https://www.nationalgeographic.com/feed/", "https://www.nature.com/nature.rss", "https://www.scientificamerican.com/rss/", "https://www.newscientist.com/feed/home/", "https://www.livescience.com/feeds/all", "https://astrostyle.com/feed/", "https://www.vogue.com/feed/rss", "https://feeds.bbci.co.uk/news/politics/rss.xml", "https://www.reuters.com/arc/outboundfeeds/newsletter-politics/?outputType=xml", "https://www.politico.com/rss/politics.xml", "https://thehill.com/feed/", "https://www.aps.org/publications/apsnews/updates/rss.cfm", "https://www.quantamagazine.org/feed/", "https://www.sciencedaily.com/rss/matter_energy/physics.xml", "https://physicsworld.com/feed/", "https://www.swpc.noaa.gov/rss.xml", "https://feeds.bbci.co.uk/weather/feeds/rss/5day/world/", "https://www.weather.gov/rss", "https://www.foxweather.com/rss", "https://techcrunch.com/feed/", "https://arstechnica.com/feed/", "https://gizmodo.com/rss", "https://www.theverge.com/rss/index.xml", "https://www.space.com/feeds/all", "https://www.universetoday.com/feed/", "https://skyandtelescope.org/feed/", "https://www.esa.int/rss", "https://www.smithsonianmag.com/rss/", "https://www.popsci.com/rss.xml", "https://www.discovermagazine.com/rss", "https://www.atlasobscura.com/feeds/latest" ] # Initialize embedding model and vector DB embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_db = Chroma(persist_directory=LOCAL_DB_DIR, embedding_function=embedding_model) def fetch_rss_feeds(): articles = [] seen_keys = set() for feed_url in RSS_FEEDS: try: logger.info(f"Fetching {feed_url}") feed = feedparser.parse(feed_url) if feed.bozo: logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}") continue for entry in feed.entries: title = entry.get("title", "No Title") link = entry.get("link", "") description = entry.get("summary", entry.get("description", "No Description")) key = f"{title}|{link}" if key not in seen_keys: seen_keys.add(key) image = (entry.get("media_content", [{}])[0].get("url") or entry.get("media_thumbnail", [{}])[0].get("url") or "svg") articles.append({ "title": title, "link": link, "description": description, "published": entry.get("published", "Unknown Date"), "category": categorize_feed(feed_url), "image": image, }) except Exception as e: logger.error(f"Error fetching {feed_url}: {e}") logger.info(f"Total articles fetched: {len(articles)}") return articles def categorize_feed(url): if "sciencedaily" in url: return "Science" elif "nasa" in url: return "Space" elif "wired" in url: return "Tech" return "Uncategorized" def process_and_store_articles(articles): documents = [] for article in articles: try: metadata = { "title": article["title"], "link": article["link"], "original_description": article["description"], "published": article["published"], "category": article["category"], "image": article["image"], } doc = Document(page_content=article["description"], metadata=metadata) documents.append(doc) except Exception as e: logger.error(f"Error processing article {article['title']}: {e}") if documents: try: vector_db.add_documents(documents) logger.info(f"Stored {len(documents)} articles in DB") except Exception as e: logger.error(f"Error storing articles: {e}") if __name__ == "__main__": articles = fetch_rss_feeds() process_and_store_articles(articles)