Spaces:
Running
Running
File size: 9,564 Bytes
2017cb6 dda378f 2017cb6 dda378f 64b5eaa 065607f dda378f 64b5eaa 065607f 64b5eaa dda378f 64b5eaa dda378f 2017cb6 64b5eaa dda378f 64b5eaa dda378f 065607f dda378f 64b5eaa dda378f 64b5eaa 2017cb6 dda378f 065607f dda378f 065607f dda378f 065607f 64b5eaa 065607f dda378f 2017cb6 065607f 64b5eaa 065607f 64b5eaa 065607f 64b5eaa 065607f 64b5eaa 2017cb6 065607f 64b5eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# database.py
import chromadb
from parser import parse_python_code
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
# User-configurable variables
DB_NAME = "python_programs" # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors" # Hugging Face Dataset name
HF_TOKEN = "YOUR_HUGGINGFACE_TOKEN" # Replace with your Hugging Face API token
PERSIST_DIR = "./chroma_data" # Directory for persistent storage (optional)
def init_chromadb(persist_dir=PERSIST_DIR):
"""Initialize ChromaDB client, optionally with persistent storage."""
try:
# Use persistent storage if directory exists, otherwise in-memory
if os.path.exists(persist_dir):
client = chromadb.PersistentClient(path=persist_dir)
else:
client = chromadb.Client()
return client
except Exception as e:
print(f"Error initializing ChromaDB: {e}")
return chromadb.Client() # Fallback to in-memory
def create_collection(client, collection_name=DB_NAME):
"""Create or get a ChromaDB collection for Python programs."""
try:
collection = client.get_collection(name=collection_name)
except:
collection = client.create_collection(name=collection_name)
return collection
def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
"""Store a program in ChromaDB with its code, sequence, and vectors."""
collection = create_collection(client, collection_name)
# Flatten vectors to ensure they are a list of numbers
flattened_vectors = [item for sublist in vectors for item in sublist]
# Store program data (ID, code, sequence, vectors)
program_id = str(hash(code)) # Use hash of code as ID for uniqueness
collection.add(
documents=[code],
metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors))}],
ids=[program_id],
embeddings=[flattened_vectors] # Pass as flat list
)
return program_id
def populate_sample_db(client):
"""Populate ChromaDB with sample Python programs."""
samples = [
"""
import os
def add_one(x):
y = x + 1
return y
""",
"""
def multiply(a, b):
c = a * b
if c > 0:
return c
"""
]
for code in samples:
parts, sequence = parse_python_code(code)
vectors = [part['vector'] for part in parts]
store_program(client, code, sequence, vectors)
def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
"""Query ChromaDB for programs matching the operations sequence or semantic description."""
collection = create_collection(client, collection_name)
if semantic_query:
# Semantic search using description tokens
query_vector = generate_semantic_vector(semantic_query)
results = collection.query(
query_texts=[semantic_query],
n_results=top_k,
include=["documents", "metadatas"]
)
else:
# Vector-based search for operations sequence
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
# Process results
matching_programs = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
sequence = meta['sequence'].split(',')
if not semantic_query or is_subsequence(operations, sequence): # Ensure sequence match for operations
try:
doc_vectors = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
except:
program_vector = [0] * 6 # Fallback for malformed vectors
similarity = cosine_similarity([query_vector], [program_vector])[0][0] if program_vector and query_vector else 0
matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', '')})
return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)
def create_vector(category, level, location, total_lines, parent_path):
"""Helper to create a vector for query (matches parser's create_vector)."""
category_map = {
'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
}
category_id = category_map.get(category, 0)
start_line, end_line = location
span = (end_line - start_line + 1) / total_lines
center_pos = ((start_line + end_line) / 2) / total_lines
parent_depth = len(parent_path)
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1))
for i, parent in enumerate(parent_path)) / max(1, len(category_map))
return [category_id, level, center_pos, span, parent_depth, parent_weight]
def is_subsequence(subseq, seq):
"""Check if subseq is a subsequence of seq."""
it = iter(seq)
return all(item in it for item in subseq)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return tokens
def generate_semantic_vector(description):
"""Generate a semantic vector for a textual description (simplified for now)."""
# This is a placeholder—use an embedding model (e.g., CodeBERT, BERT) for real semantic search
tokens = description.lower().split()
category_weights = {
'import': 1, 'function': 2, 'assign': 17, 'input': 18, 'return': 19, 'if': 5, 'try': 8, 'except': 14
}
vector = [0] * 6
for token in tokens:
for cat, weight in category_weights.items():
if cat in token:
vector[0] = weight # Use category_id as primary feature
vector[1] = 1 # Assume level 1 for simplicity
vector[2] = 0.5 # Center position (midpoint)
vector[3] = 0.1 # Span (small for simplicity)
vector[4] = 1 # Parent depth (shallow)
vector[5] = weight / len(category_weights) # Parent weight
return vector
def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
"""Save ChromaDB data to Hugging Face Dataset."""
client = init_chromadb()
collection = create_collection(client)
# Fetch all data from ChromaDB
results = collection.get(include=["documents", "metadatas", "embeddings"])
data = {
"code": results["documents"],
"sequence": [meta["sequence"] for meta in results["metadatas"]],
"vectors": [[item for sublist in vec for item in sublist] for vec in results["embeddings"]], # Flatten vectors
"description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]]
}
# Create a Hugging Face Dataset
dataset = Dataset.from_dict(data)
# Push to Hugging Face Hub
dataset.push_to_hub(dataset_name, token=token)
print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")
def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
"""Load ChromaDB data from Hugging Face Dataset, handle empty dataset."""
try:
dataset = load_dataset(dataset_name, split="train", token=token)
except Exception as e:
print(f"Error loading dataset from Hugging Face: {e}. Populating with samples...")
client = init_chromadb()
populate_sample_db(client)
save_chromadb_to_hf() # Create and push a new dataset
return init_chromadb()
client = init_chromadb()
collection = create_collection(client)
for item in dataset:
collection.add(
documents=[item["code"]],
metadatas=[{"sequence": item["sequence"], "description_tokens": item["description_tokens"]}],
ids=[str(hash(item["code"]))],
embeddings=[item["vectors"]]
)
return client
if __name__ == '__main__':
client = load_chromadb_from_hf()
# Uncomment to save to Hugging Face
# save_chromadb_to_hf() |