File size: 10,783 Bytes
2017cb6
dda378f
23a1178
dda378f
64b5eaa
 
065607f
0e0e6a1
 
1c2a481
dda378f
1c2a481
 
2143f28
1c2a481
64b5eaa
065607f
64b5eaa
f28324d
64b5eaa
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
64b5eaa
 
dda378f
 
 
 
 
2017cb6
64b5eaa
 
dda378f
 
0e0e6a1
275730d
 
64b5eaa
dda378f
 
 
 
275730d
dda378f
275730d
dda378f
 
 
 
64b5eaa
2017cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
 
065607f
 
dda378f
 
065607f
23a1178
065607f
 
0e0e6a1
065607f
 
 
 
 
 
 
 
 
 
 
dda378f
 
 
 
 
065607f
64b5eaa
0e0e6a1
275730d
0e0e6a1
 
 
 
64b5eaa
 
275730d
 
 
 
dda378f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017cb6
065607f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275730d
87ca86e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2a481
64b5eaa
 
 
 
 
 
 
 
 
275730d
 
 
64b5eaa
 
 
 
 
 
 
 
 
1c2a481
065607f
 
 
 
 
 
 
 
 
 
64b5eaa
 
 
 
 
 
275730d
64b5eaa
275730d
64b5eaa
 
 
2017cb6
065607f
64b5eaa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# database.py
import chromadb
from parser import parse_python_code, create_vector
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModel
import torch
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# User-configurable variables (no HF_KEY hardcoded here)
DB_NAME = "python_programs"  # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors"  # Hugging Face Dataset name
PERSIST_DIR = "./chroma_data"  # Directory for persistent storage (optional)
USE_GPU = False  # Default to CPU, set to True for GPU if available

def init_chromadb(persist_dir=PERSIST_DIR):
    """Initialize ChromaDB client, optionally with persistent storage."""
    try:
        # Use persistent storage if directory exists, otherwise in-memory
        if os.path.exists(persist_dir):
            client = chromadb.PersistentClient(path=persist_dir)
        else:
            client = chromadb.Client()
        return client
    except Exception as e:
        print(f"Error initializing ChromaDB: {e}")
        return chromadb.Client()  # Fallback to in-memory

def create_collection(client, collection_name=DB_NAME):
    """Create or get a ChromaDB collection for Python programs."""
    try:
        collection = client.get_collection(name=collection_name)
    except:
        collection = client.create_collection(name=collection_name)
    return collection

def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
    """Store a program in ChromaDB with its code, sequence, and vectors."""
    collection = create_collection(client, collection_name)
    
    # Flatten vectors to ensure they are a list of numbers (ChromaDB expects flat embeddings)
    # Use the first vector (semantic vector) for ChromaDB embedding
    flattened_vectors = vectors[0] if vectors else [0] * 6  # Ensure 6D
    
    # Store program data (ID, code, sequence, vectors)
    program_id = str(hash(code))  # Use hash of code as ID for uniqueness
    collection.add(
        documents=[code],
        metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors)), "program_vectors": str(vectors)}],
        ids=[program_id],
        embeddings=[flattened_vectors]  # Pass as 6D semantic vector
    )
    return program_id

def populate_sample_db(client):
    """Populate ChromaDB with sample Python programs."""
    samples = [
        """
        import os
        def add_one(x):
            y = x + 1
            return y
        """,
        """
        def multiply(a, b):
            c = a * b
            if c > 0:
                return c
        """
    ]
    
    for code in samples:
        parts, sequence = parse_python_code(code)
        vectors = [part['vector'] for part in parts]
        store_program(client, code, sequence, vectors)

def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
    """Query ChromaDB for programs matching the operations sequence or semantic description."""
    collection = create_collection(client, collection_name)
    
    if semantic_query:
        # Semantic search using a 6D vector generated from the description
        query_vector = generate_semantic_vector(semantic_query)
        results = collection.query(
            query_embeddings=[query_vector],
            n_results=top_k,
            include=["documents", "metadatas"]
        )
    else:
        # Vector-based search for operations sequence
        query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
        results = collection.query(
            query_embeddings=[query_vector],
            n_results=top_k,
            include=["documents", "metadatas"]
        )
    
    # Process results
    matching_programs = []
    for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
        sequence = meta['sequence'].split(',')
        if not semantic_query or is_subsequence(operations, sequence):  # Ensure sequence match for operations
            try:
                # Reconstruct program vectors (flatten if needed)
                doc_vectors = eval(meta['program_vectors']) if isinstance(meta['program_vectors'], str) else meta['program_vectors']
                if isinstance(doc_vectors, (list, np.ndarray)) and len(doc_vectors) == 6:
                    program_vector = doc_vectors  # Single flat vector
                else:
                    program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
            except:
                program_vector = [0] * 6  # Fallback for malformed vectors
            # Use the semantic embedding for similarity
            semantic_vector = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
            similarity = cosine_similarity([query_vector], [semantic_vector])[0][0] if semantic_vector and query_vector else 0
            matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', ''), 'program_vectors': meta.get('program_vectors', '[]')})
    
    return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)

def create_vector(category, level, location, total_lines, parent_path):
    """Helper to create a vector for query (matches parser's create_vector)."""
    category_map = {
        'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
        'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
        'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
        'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
    }
    category_id = category_map.get(category, 0)
    start_line, end_line = location
    span = (end_line - start_line + 1) / total_lines
    center_pos = ((start_line + end_line) / 2) / total_lines
    parent_depth = len(parent_path)
    parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1)) 
                        for i, parent in enumerate(parent_path)) / max(1, len(category_map))
    return [category_id, level, center_pos, span, parent_depth, parent_weight]

def is_subsequence(subseq, seq):
    """Check if subseq is a subsequence of seq."""
    it = iter(seq)
    return all(item in it for item in subseq)

def generate_description_tokens(sequence, vectors):
    """Generate semantic description tokens for a program based on its sequence and vectors."""
    tokens = []
    category_descriptions = {
        'import': 'imports module',
        'function': 'defines function',
        'assigned_variable': 'assigns variable',
        'input_variable': 'input parameter',
        'returned_variable': 'returns value',
        'if': 'conditional statement',
        'return': 'returns result',
        'try': 'try block',
        'except': 'exception handler',
        'expression': 'expression statement',
        'spacer': 'empty line or comment'
    }
    
    for cat, vec in zip(sequence, vectors):
        if cat in category_descriptions:
            tokens.append(f"{category_descriptions[cat]}:{cat}")
            # Add vector-derived features (e.g., level, span) as tokens
            tokens.append(f"level:{vec[1]}")
            tokens.append(f"span:{vec[3]:.2f}")
    return tokens

def generate_semantic_vector(description, total_lines=100, use_gpu=USE_GPU):
    """Generate a 6D semantic vector for a textual description using CodeBERT, projecting to 6D."""
    # Load CodeBERT model and tokenizer
    model_name = "microsoft/codebert-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    device = torch.device("cuda" if use_gpu and torch.cuda.is_available() else "cpu")
    model = AutoModel.from_pretrained(model_name).to(device)
    
    # Tokenize and encode the description
    inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True, max_length=512)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Generate embeddings
    with torch.no_grad():
        outputs = model(**inputs)
        # Use mean pooling of the last hidden states
        vector = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().tolist()
    
    # Truncate or project to 6D (simplified projection: take first 6 dimensions)
    if len(vector) < 6:
        vector.extend([0] * (6 - len(vector)))
    elif len(vector) > 6:
        vector = vector[:6]  # Truncate to 6D
    
    return vector

def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
    """Save ChromaDB data to Hugging Face Dataset."""
    client = init_chromadb()
    collection = create_collection(client)
    
    # Fetch all data from ChromaDB
    results = collection.get(include=["documents", "metadatas", "embeddings"])
    data = {
        "code": results["documents"],
        "sequence": [meta["sequence"] for meta in results["metadatas"]],
        "vectors": results["embeddings"],  # Semantic 6D vectors
        "description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]],
        "program_vectors": [eval(meta.get('program_vectors', '[]')) for meta in results["metadatas"]]  # Store structural vectors
    }
    
    # Create a Hugging Face Dataset
    dataset = Dataset.from_dict(data)
    
    # Push to Hugging Face Hub
    dataset.push_to_hub(dataset_name, token=token)
    print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")

def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
    """Load ChromaDB data from Hugging Face Dataset, handle empty dataset."""
    try:
        dataset = load_dataset(dataset_name, split="train", token=token)
    except Exception as e:
        print(f"Error loading dataset from Hugging Face: {e}. Populating with samples...")
        client = init_chromadb()
        populate_sample_db(client)
        save_chromadb_to_hf()  # Create and push a new dataset
        return init_chromadb()
    
    client = init_chromadb()
    collection = create_collection(client)
    
    for item in dataset:
        collection.add(
            documents=[item["code"]],
            metadatas=[{"sequence": item["sequence"], "description_tokens": item["description_tokens"], "program_vectors": str(item["program_vectors"])}],
            ids=[str(hash(item["code"]))],
            embeddings=[item["vectors"]]  # Use semantic 6D vectors
        )
    return client

if __name__ == '__main__':
    client = load_chromadb_from_hf()
    # Uncomment to save to Hugging Face
    # save_chromadb_to_hf()