Spaces:
Running
Running
File size: 10,783 Bytes
2017cb6 dda378f 23a1178 dda378f 64b5eaa 065607f 0e0e6a1 1c2a481 dda378f 1c2a481 2143f28 1c2a481 64b5eaa 065607f 64b5eaa f28324d 64b5eaa dda378f 64b5eaa dda378f 2017cb6 64b5eaa dda378f 0e0e6a1 275730d 64b5eaa dda378f 275730d dda378f 275730d dda378f 64b5eaa 2017cb6 dda378f 065607f dda378f 065607f 23a1178 065607f 0e0e6a1 065607f dda378f 065607f 64b5eaa 0e0e6a1 275730d 0e0e6a1 64b5eaa 275730d dda378f 2017cb6 065607f 275730d 87ca86e 1c2a481 64b5eaa 275730d 64b5eaa 1c2a481 065607f 64b5eaa 275730d 64b5eaa 275730d 64b5eaa 2017cb6 065607f 64b5eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# database.py
import chromadb
from parser import parse_python_code, create_vector
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModel
import torch
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# User-configurable variables (no HF_KEY hardcoded here)
DB_NAME = "python_programs" # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors" # Hugging Face Dataset name
PERSIST_DIR = "./chroma_data" # Directory for persistent storage (optional)
USE_GPU = False # Default to CPU, set to True for GPU if available
def init_chromadb(persist_dir=PERSIST_DIR):
"""Initialize ChromaDB client, optionally with persistent storage."""
try:
# Use persistent storage if directory exists, otherwise in-memory
if os.path.exists(persist_dir):
client = chromadb.PersistentClient(path=persist_dir)
else:
client = chromadb.Client()
return client
except Exception as e:
print(f"Error initializing ChromaDB: {e}")
return chromadb.Client() # Fallback to in-memory
def create_collection(client, collection_name=DB_NAME):
"""Create or get a ChromaDB collection for Python programs."""
try:
collection = client.get_collection(name=collection_name)
except:
collection = client.create_collection(name=collection_name)
return collection
def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
"""Store a program in ChromaDB with its code, sequence, and vectors."""
collection = create_collection(client, collection_name)
# Flatten vectors to ensure they are a list of numbers (ChromaDB expects flat embeddings)
# Use the first vector (semantic vector) for ChromaDB embedding
flattened_vectors = vectors[0] if vectors else [0] * 6 # Ensure 6D
# Store program data (ID, code, sequence, vectors)
program_id = str(hash(code)) # Use hash of code as ID for uniqueness
collection.add(
documents=[code],
metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors)), "program_vectors": str(vectors)}],
ids=[program_id],
embeddings=[flattened_vectors] # Pass as 6D semantic vector
)
return program_id
def populate_sample_db(client):
"""Populate ChromaDB with sample Python programs."""
samples = [
"""
import os
def add_one(x):
y = x + 1
return y
""",
"""
def multiply(a, b):
c = a * b
if c > 0:
return c
"""
]
for code in samples:
parts, sequence = parse_python_code(code)
vectors = [part['vector'] for part in parts]
store_program(client, code, sequence, vectors)
def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
"""Query ChromaDB for programs matching the operations sequence or semantic description."""
collection = create_collection(client, collection_name)
if semantic_query:
# Semantic search using a 6D vector generated from the description
query_vector = generate_semantic_vector(semantic_query)
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
else:
# Vector-based search for operations sequence
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
# Process results
matching_programs = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
sequence = meta['sequence'].split(',')
if not semantic_query or is_subsequence(operations, sequence): # Ensure sequence match for operations
try:
# Reconstruct program vectors (flatten if needed)
doc_vectors = eval(meta['program_vectors']) if isinstance(meta['program_vectors'], str) else meta['program_vectors']
if isinstance(doc_vectors, (list, np.ndarray)) and len(doc_vectors) == 6:
program_vector = doc_vectors # Single flat vector
else:
program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
except:
program_vector = [0] * 6 # Fallback for malformed vectors
# Use the semantic embedding for similarity
semantic_vector = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
similarity = cosine_similarity([query_vector], [semantic_vector])[0][0] if semantic_vector and query_vector else 0
matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', ''), 'program_vectors': meta.get('program_vectors', '[]')})
return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)
def create_vector(category, level, location, total_lines, parent_path):
"""Helper to create a vector for query (matches parser's create_vector)."""
category_map = {
'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
}
category_id = category_map.get(category, 0)
start_line, end_line = location
span = (end_line - start_line + 1) / total_lines
center_pos = ((start_line + end_line) / 2) / total_lines
parent_depth = len(parent_path)
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1))
for i, parent in enumerate(parent_path)) / max(1, len(category_map))
return [category_id, level, center_pos, span, parent_depth, parent_weight]
def is_subsequence(subseq, seq):
"""Check if subseq is a subsequence of seq."""
it = iter(seq)
return all(item in it for item in subseq)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return tokens
def generate_semantic_vector(description, total_lines=100, use_gpu=USE_GPU):
"""Generate a 6D semantic vector for a textual description using CodeBERT, projecting to 6D."""
# Load CodeBERT model and tokenizer
model_name = "microsoft/codebert-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device("cuda" if use_gpu and torch.cuda.is_available() else "cpu")
model = AutoModel.from_pretrained(model_name).to(device)
# Tokenize and encode the description
inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate embeddings
with torch.no_grad():
outputs = model(**inputs)
# Use mean pooling of the last hidden states
vector = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().tolist()
# Truncate or project to 6D (simplified projection: take first 6 dimensions)
if len(vector) < 6:
vector.extend([0] * (6 - len(vector)))
elif len(vector) > 6:
vector = vector[:6] # Truncate to 6D
return vector
def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
"""Save ChromaDB data to Hugging Face Dataset."""
client = init_chromadb()
collection = create_collection(client)
# Fetch all data from ChromaDB
results = collection.get(include=["documents", "metadatas", "embeddings"])
data = {
"code": results["documents"],
"sequence": [meta["sequence"] for meta in results["metadatas"]],
"vectors": results["embeddings"], # Semantic 6D vectors
"description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]],
"program_vectors": [eval(meta.get('program_vectors', '[]')) for meta in results["metadatas"]] # Store structural vectors
}
# Create a Hugging Face Dataset
dataset = Dataset.from_dict(data)
# Push to Hugging Face Hub
dataset.push_to_hub(dataset_name, token=token)
print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")
def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
"""Load ChromaDB data from Hugging Face Dataset, handle empty dataset."""
try:
dataset = load_dataset(dataset_name, split="train", token=token)
except Exception as e:
print(f"Error loading dataset from Hugging Face: {e}. Populating with samples...")
client = init_chromadb()
populate_sample_db(client)
save_chromadb_to_hf() # Create and push a new dataset
return init_chromadb()
client = init_chromadb()
collection = create_collection(client)
for item in dataset:
collection.add(
documents=[item["code"]],
metadatas=[{"sequence": item["sequence"], "description_tokens": item["description_tokens"], "program_vectors": str(item["program_vectors"])}],
ids=[str(hash(item["code"]))],
embeddings=[item["vectors"]] # Use semantic 6D vectors
)
return client
if __name__ == '__main__':
client = load_chromadb_from_hf()
# Uncomment to save to Hugging Face
# save_chromadb_to_hf() |