File size: 10,016 Bytes
2017cb6
dda378f
2017cb6
dda378f
64b5eaa
 
065607f
0e0e6a1
 
dda378f
64b5eaa
 
065607f
 
64b5eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
64b5eaa
 
dda378f
 
 
 
 
2017cb6
64b5eaa
 
dda378f
 
0e0e6a1
64b5eaa
 
dda378f
 
 
 
065607f
dda378f
64b5eaa
dda378f
 
 
 
64b5eaa
2017cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
 
065607f
 
dda378f
 
065607f
0e0e6a1
065607f
 
0e0e6a1
065607f
 
 
 
 
 
 
 
 
 
 
dda378f
 
 
 
 
065607f
64b5eaa
0e0e6a1
64b5eaa
0e0e6a1
 
 
 
64b5eaa
 
 
065607f
dda378f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017cb6
065607f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0e6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065607f
 
64b5eaa
 
 
 
 
 
 
 
 
 
0e0e6a1
065607f
64b5eaa
 
 
 
 
 
 
 
 
 
065607f
 
 
 
 
 
 
 
 
 
64b5eaa
 
 
 
 
 
065607f
64b5eaa
 
 
 
 
2017cb6
065607f
64b5eaa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# database.py
import chromadb
from parser import parse_python_code
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModel
import torch

# User-configurable variables
DB_NAME = "python_programs"  # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors"  # Hugging Face Dataset name
HF_TOKEN = "YOUR_HUGGINGFACE_TOKEN"  # Replace with your Hugging Face API token
PERSIST_DIR = "./chroma_data"  # Directory for persistent storage (optional)

def init_chromadb(persist_dir=PERSIST_DIR):
    """Initialize ChromaDB client, optionally with persistent storage."""
    try:
        # Use persistent storage if directory exists, otherwise in-memory
        if os.path.exists(persist_dir):
            client = chromadb.PersistentClient(path=persist_dir)
        else:
            client = chromadb.Client()
        return client
    except Exception as e:
        print(f"Error initializing ChromaDB: {e}")
        return chromadb.Client()  # Fallback to in-memory

def create_collection(client, collection_name=DB_NAME):
    """Create or get a ChromaDB collection for Python programs."""
    try:
        collection = client.get_collection(name=collection_name)
    except:
        collection = client.create_collection(name=collection_name)
    return collection

def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
    """Store a program in ChromaDB with its code, sequence, and vectors."""
    collection = create_collection(client, collection_name)
    
    # Flatten vectors to ensure they are a list of numbers (ChromaDB expects flat embeddings)
    flattened_vectors = [item for sublist in vectors for item in sublist]
    
    # Store program data (ID, code, sequence, vectors)
    program_id = str(hash(code))  # Use hash of code as ID for uniqueness
    collection.add(
        documents=[code],
        metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors))}],
        ids=[program_id],
        embeddings=[flattened_vectors]  # Pass as flat list
    )
    return program_id

def populate_sample_db(client):
    """Populate ChromaDB with sample Python programs."""
    samples = [
        """
        import os
        def add_one(x):
            y = x + 1
            return y
        """,
        """
        def multiply(a, b):
            c = a * b
            if c > 0:
                return c
        """
    ]
    
    for code in samples:
        parts, sequence = parse_python_code(code)
        vectors = [part['vector'] for part in parts]
        store_program(client, code, sequence, vectors)

def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
    """Query ChromaDB for programs matching the operations sequence or semantic description."""
    collection = create_collection(client, collection_name)
    
    if semantic_query:
        # Semantic search using CodeBERT embeddings
        query_vector = generate_semantic_vector(semantic_query)
        results = collection.query(
            query_embeddings=[query_vector],
            n_results=top_k,
            include=["documents", "metadatas"]
        )
    else:
        # Vector-based search for operations sequence
        query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
        results = collection.query(
            query_embeddings=[query_vector],
            n_results=top_k,
            include=["documents", "metadatas"]
        )
    
    # Process results
    matching_programs = []
    for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
        sequence = meta['sequence'].split(',')
        if not semantic_query or is_subsequence(operations, sequence):  # Ensure sequence match for operations
            try:
                # Reconstruct program vectors (flatten if needed)
                doc_vectors = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
                if isinstance(doc_vectors, (list, np.ndarray)) and len(doc_vectors) == 6:
                    program_vector = doc_vectors  # Single flat vector
                else:
                    program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
            except:
                program_vector = [0] * 6  # Fallback for malformed vectors
            similarity = cosine_similarity([query_vector], [program_vector])[0][0] if program_vector and query_vector else 0
            matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', '')})
    
    return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)

def create_vector(category, level, location, total_lines, parent_path):
    """Helper to create a vector for query (matches parser's create_vector)."""
    category_map = {
        'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
        'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
        'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
        'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
    }
    category_id = category_map.get(category, 0)
    start_line, end_line = location
    span = (end_line - start_line + 1) / total_lines
    center_pos = ((start_line + end_line) / 2) / total_lines
    parent_depth = len(parent_path)
    parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1)) 
                        for i, parent in enumerate(parent_path)) / max(1, len(category_map))
    return [category_id, level, center_pos, span, parent_depth, parent_weight]

def is_subsequence(subseq, seq):
    """Check if subseq is a subsequence of seq."""
    it = iter(seq)
    return all(item in it for item in subseq)

def generate_description_tokens(sequence, vectors):
    """Generate semantic description tokens for a program based on its sequence and vectors."""
    tokens = []
    category_descriptions = {
        'import': 'imports module',
        'function': 'defines function',
        'assigned_variable': 'assigns variable',
        'input_variable': 'input parameter',
        'returned_variable': 'returns value',
        'if': 'conditional statement',
        'return': 'returns result',
        'try': 'try block',
        'except': 'exception handler',
        'expression': 'expression statement',
        'spacer': 'empty line or comment'
    }
    
    for cat, vec in zip(sequence, vectors):
        if cat in category_descriptions:
            tokens.append(f"{category_descriptions[cat]}:{cat}")
            # Add vector-derived features (e.g., level, span) as tokens
            tokens.append(f"level:{vec[1]}")
            tokens.append(f"span:{vec[3]:.2f}")
    return tokens

def generate_semantic_vector(description, use_gpu=False):
    """Generate a semantic vector for a textual description using CodeBERT, with CPU/GPU option."""
    # Load CodeBERT model and tokenizer
    model_name = "microsoft/codebert-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    device = torch.device("cuda" if use_gpu and torch.cuda.is_available() else "cpu")
    model = AutoModel.from_pretrained(model_name).to(device)
    
    # Tokenize and encode the description
    inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True, max_length=512)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Generate embeddings
    with torch.no_grad():
        outputs = model(**inputs)
        # Use mean pooling of the last hidden states
        vector = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().tolist()
    
    # Truncate or pad to 6D to match our vectors
    if len(vector) < 6:
        vector.extend([0] * (6 - len(vector)))
    elif len(vector) > 6:
        vector = vector[:6]
    return vector

def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
    """Save ChromaDB data to Hugging Face Dataset."""
    client = init_chromadb()
    collection = create_collection(client)
    
    # Fetch all data from ChromaDB
    results = collection.get(include=["documents", "metadatas", "embeddings"])
    data = {
        "code": results["documents"],
        "sequence": [meta["sequence"] for meta in results["metadatas"]],
        "vectors": results["embeddings"],  # ChromaDB already flattens embeddings
        "description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]]
    }
    
    # Create a Hugging Face Dataset
    dataset = Dataset.from_dict(data)
    
    # Push to Hugging Face Hub
    dataset.push_to_hub(dataset_name, token=token)
    print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")

def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
    """Load ChromaDB data from Hugging Face Dataset, handle empty dataset."""
    try:
        dataset = load_dataset(dataset_name, split="train", token=token)
    except Exception as e:
        print(f"Error loading dataset from Hugging Face: {e}. Populating with samples...")
        client = init_chromadb()
        populate_sample_db(client)
        save_chromadb_to_hf()  # Create and push a new dataset
        return init_chromadb()
    
    client = init_chromadb()
    collection = create_collection(client)
    
    for item in dataset:
        collection.add(
            documents=[item["code"]],
            metadatas=[{"sequence": item["sequence"], "description_tokens": item["description_tokens"]}],
            ids=[str(hash(item["code"]))],
            embeddings=[item["vectors"]]
        )
    return client

if __name__ == '__main__':
    client = load_chromadb_from_hf()
    # Uncomment to save to Hugging Face
    # save_chromadb_to_hf()