Spaces:
Running
Running
File size: 10,702 Bytes
470905d 08ea95c 575baac 107a11e 08ea95c 12bbd2a e605f4b 3556f91 c26f5f4 107a11e 5859778 7c98d00 5859778 107a11e 575baac 7c98d00 470905d 575baac 470905d 575baac c26f5f4 575baac 7c98d00 470905d a2d4670 c26f5f4 3556f91 575baac 7c98d00 575baac 470905d a2d4670 c26f5f4 3556f91 470905d e0a08b7 470905d 4026330 c26f5f4 3556f91 470905d e0a08b7 4026330 e0a08b7 3556f91 e0a08b7 12bbd2a f8a03dd 12bbd2a f8a03dd 3556f91 fa2db69 3556f91 f8a03dd fa2db69 3556f91 fa2db69 12bbd2a f8a03dd 12bbd2a 3556f91 e605f4b 3556f91 fa2db69 3556f91 fa2db69 e605f4b 3556f91 f8a03dd e605f4b f8a03dd 3556f91 fa2db69 3556f91 fa2db69 f8a03dd e605f4b f8a03dd 3556f91 f8a03dd 575baac e08abc4 5859778 7c98d00 470905d 7c98d00 470905d 575baac 3556f91 470905d 107a11e 08ea95c 9abfd37 08ea95c 4026330 107a11e c26f5f4 dc85134 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# app.py
from flask import Flask, request, render_template, jsonify, send_file
from parser import parse_python_code
import os
import json
import io
import subprocess # To call process_hf_dataset.py
from database import init_chromadb, store_program, query_programs, load_chromadb_from_hf, DB_NAME
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# User-configurable variables
UPLOAD_DIR = "./uploads" # Directory for uploads
app = Flask(__name__)
def reconstruct_code(parts):
"""Reconstruct the original code from parsed parts."""
sorted_parts = sorted(parts, key=lambda p: p['location'][0])
return ''.join(part['source'] for part in sorted_parts)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
parts = None
filename = 'unnamed.py'
code_input = None
query_results = None
# Handle file upload or pasted code (parsing)
if 'file' in request.files and request.files['file'].filename:
file = request.files['file']
if not file.filename.endswith('.py'):
return 'Invalid file type. Please upload a Python file.', 400
filename = file.filename
file_path = os.path.join(UPLOAD_DIR, filename)
file.save(file_path)
with open(file_path, 'r') as f:
code_input = f.read()
parts, sequence = parse_python_code(code_input)
# Store in ChromaDB
client = init_chromadb()
vectors = [part['vector'] for part in parts]
store_program(client, code_input, sequence, vectors, DB_NAME)
logger.info(f"Stored code: {filename}")
elif 'code' in request.form and request.form['code'].strip():
code_input = request.form['code']
filename = request.form.get('filename', 'unnamed.py') or 'unnamed.py'
if not filename.endswith('.py'):
filename += '.py'
parts, sequence = parse_python_code(code_input)
vectors = [part['vector'] for part in parts]
client = init_chromadb()
store_program(client, code_input, sequence, vectors, DB_NAME)
logger.info(f"Stored code: {filename}")
elif 'query_ops' in request.form and request.form['query_ops'].strip():
# Handle query for operations (category sequence)
operations = [op.strip() for op in request.form['query_ops'].split(',')]
client = load_chromadb_from_hf()
query_results = query_programs(client, operations, DB_NAME)
logger.info(f"Queried operations: {operations}")
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
elif 'semantic_query' in request.form and request.form['semantic_query'].strip():
# Handle semantic query (natural language description)
semantic_query = request.form['semantic_query']
client = load_chromadb_from_hf()
query_results = query_programs(client, None, DB_NAME, semantic_query=semantic_query)
logger.info(f"Queried semantically: {semantic_query}")
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
elif 'process_hf' in request.form:
# Trigger processing of Hugging Face dataset with fresh database
try:
# Reset ChromaDB collection
client = init_chromadb()
try:
client.delete_collection(DB_NAME)
logger.info(f"Deleted ChromaDB collection: {DB_NAME}")
except Exception as e:
logger.warning(f"Failed to delete collection {DB_NAME}: {e}")
collection = client.create_collection(DB_NAME)
logger.info(f"Created fresh ChromaDB collection: {DB_NAME}")
# Process dataset
result = subprocess.run(['python', 'process_hf_dataset.py'], check=True, capture_output=True, text=True, cwd=os.path.dirname(__file__))
logger.info(f"Process Hugging Face dataset output: {result.stdout}")
if result.stderr:
logger.error(f"Process Hugging Face dataset errors: {result.stderr}")
return render_template(
'results_partial.html',
parts=None,
filename="Hugging Face Dataset Processed",
reconstructed_code=None,
code_input=None,
query_results=None,
message="Hugging Face dataset processed and stored successfully with fresh database."
)
except subprocess.CalledProcessError as e:
logger.error(f"Error processing Hugging Face dataset: {e.stderr}")
return f"Error processing Hugging Face dataset: {e.stderr}", 500
elif 'load_dataset' in request.form:
# Trigger loading of Hugging Face dataset without resetting
try:
# Check if collection exists, get or create if needed
client = init_chromadb()
collection = client.get_or_create_collection(DB_NAME)
logger.info(f"Using existing or new ChromaDB collection: {DB_NAME}")
# Process dataset
result = subprocess.run(['python', 'process_hf_dataset.py'], check=True, capture_output=True, text=True, cwd=os.path.dirname(__file__))
logger.info(f"Load Hugging Face dataset output: {result.stdout}")
if result.stderr:
logger.error(f"Load Hugging Face dataset errors: {result.stderr}")
return render_template(
'results_partial.html',
parts=None,
filename="Hugging Face Dataset Loaded",
reconstructed_code=None,
code_input=None,
query_results=None,
message="Hugging Face dataset loaded and stored successfully."
)
except subprocess.CalledProcessError as e:
logger.error(f"Error loading Hugging Face dataset: {e.stderr}")
return f"Error loading Hugging Face dataset: {e.stderr}", 500
elif 'reset_db' in request.form:
# Reset ChromaDB collection (no repopulation with samples)
try:
client = init_chromadb()
try:
client.delete_collection(DB_NAME)
logger.info(f"Deleted ChromaDB collection: {DB_NAME}")
except Exception as e:
logger.warning(f"Failed to delete collection {DB_NAME}: {e}")
collection = client.create_collection(DB_NAME)
logger.info(f"Created fresh ChromaDB collection: {DB_NAME}")
# Verify collection creation by checking if it's iterable (fix for 'NoneType' error)
if collection is None or not hasattr(collection, 'add'):
raise ValueError("ChromaDB collection creation failed")
return render_template(
'results_partial.html',
parts=None,
filename="Database Reset",
reconstructed_code=None,
code_input=None,
query_results=None,
message="Database reset successfully."
)
except Exception as e:
logger.error(f"Error resetting database: {e}")
return f"Error resetting database: {e}", 500
if parts:
indexed_parts = [{'index': i + 1, **part} for i, part in enumerate(parts)]
reconstructed_code = reconstruct_code(indexed_parts)
return render_template(
'results_partial.html',
parts=indexed_parts,
filename=filename,
reconstructed_code=reconstructed_code,
code_input=code_input,
query_results=None
)
return 'No file, code, or query provided', 400
# Initial page load (start empty, no default population)
logger.info("Application started, database empty until triggered by buttons")
return render_template('index.html', parts=None, filename=None, reconstructed_code=None, code_input=None, query_results=None)
@app.route('/export_json', methods=['POST'])
def export_json():
parts = request.json.get('parts', [])
export_data = [{'vector': part['vector'], 'source': part['source'], 'description': generate_description_tokens([part['category']], [part['vector']])} for part in parts]
json_str = json.dumps(export_data, indent=2)
buffer = io.BytesIO(json_str.encode('utf-8'))
buffer.seek(0)
return send_file(
buffer,
as_attachment=True,
download_name='code_vectors.json',
mimetype='application/json'
)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return " ".join(tokens)
if __name__ == '__main__':
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR)
app.run(host="0.0.0.0", port=7860) # Bind to all interfaces for Hugging Face Spaces |