Spaces:
Running
Running
File size: 13,103 Bytes
2017cb6 dda378f 23a1178 dda378f 64b5eaa 065607f 0e0e6a1 1c2a481 a4492a3 dda378f 1c2a481 2143f28 a4492a3 64b5eaa 065607f 64b5eaa f28324d 64b5eaa a4492a3 64b5eaa a4492a3 64b5eaa a4492a3 64b5eaa a4492a3 dda378f 64b5eaa a4492a3 dda378f a4492a3 2017cb6 64b5eaa a4492a3 dda378f a4492a3 dda378f 065607f a4492a3 dda378f 2017cb6 065607f a4492a3 87ca86e a4492a3 87ca86e a4492a3 87ca86e 1c2a481 a4492a3 64b5eaa 1c2a481 a4492a3 065607f a4492a3 065607f a4492a3 065607f a4492a3 64b5eaa 2017cb6 065607f a4492a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# database.py
import chromadb
from parser import parse_python_code, create_vector
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModel
import torch
from dotenv import load_dotenv
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# User-configurable variables
DB_NAME = "python_programs" # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors" # Hugging Face Dataset name
PERSIST_DIR = "./chroma_data" # Directory for persistent storage (optional)
USE_GPU = False # Default to CPU, set to True for GPU if available
def init_chromadb(persist_dir=PERSIST_DIR):
"""Initialize ChromaDB client, optionally with persistent storage, with error handling."""
try:
# Use persistent storage if directory exists, otherwise in-memory
if os.path.exists(persist_dir):
logger.info(f"Initializing ChromaDB with persistent storage at {persist_dir}")
client = chromadb.PersistentClient(path=persist_dir)
else:
logger.info("Initializing ChromaDB with in-memory storage")
client = chromadb.Client()
return client
except Exception as e:
logger.error(f"Error initializing ChromaDB: {e}")
raise
def create_collection(client, collection_name=DB_NAME):
"""Create or get a ChromaDB collection for Python programs, with error handling."""
try:
collection = client.get_or_create_collection(name=collection_name)
logger.info(f"Using ChromaDB collection: {collection_name}")
return collection
except Exception as e:
logger.error(f"Error creating or getting collection {collection_name}: {e}")
raise
def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
"""Store a program in ChromaDB with its code, sequence, and vectors, with error handling."""
try:
collection = create_collection(client, collection_name)
# Flatten vectors to ensure they are a list of numbers (ChromaDB expects flat embeddings)
# Use the first vector (semantic or program vector) for ChromaDB embedding, ensuring 6D
flattened_vectors = vectors[0] if vectors and len(vectors) > 0 and len(vectors[0]) == 6 else [0] * 6
# Store program data (ID, code, sequence, vectors)
program_id = str(hash(code)) # Use hash of code as ID for uniqueness
collection.add(
documents=[code],
metadatas=[{"sequence": ",".join(sequence), "description_tokens": " ".join(generate_description_tokens(sequence, vectors)), "program_vectors": str(vectors)}],
ids=[program_id],
embeddings=[flattened_vectors] # Pass as 6D vector
)
logger.info(f"Stored program in ChromaDB: {program_id}")
return program_id
except Exception as e:
logger.error(f"Error storing program in ChromaDB: {e}")
raise
def populate_sample_db(client):
"""Populate ChromaDB with sample Python programs, with logging."""
try:
samples = [
"""
import os
def add_one(x):
y = x + 1
return y
""",
"""
def multiply(a, b):
c = a * b
if c > 0:
return c
"""
]
for code in samples:
parts, sequence = parse_python_code(code)
vectors = [part['vector'] for part in parts]
store_program(client, code, sequence, vectors)
logger.info("Populated ChromaDB with sample programs")
except Exception as e:
logger.error(f"Error populating sample database: {e}")
raise
def query_programs(client, operations, collection_name=DB_NAME, top_k=5, semantic_query=None):
"""Query ChromaDB for programs matching the operations sequence or semantic description, with error handling."""
try:
collection = create_collection(client, collection_name)
if semantic_query:
# Semantic search using a 6D vector generated from the description
query_vector = generate_semantic_vector(semantic_query)
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
else:
# Vector-based search for operations sequence
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
# Process results
matching_programs = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
sequence = meta['sequence'].split(',')
if not semantic_query or is_subsequence(operations, sequence): # Ensure sequence match for operations
try:
# Reconstruct program vectors (flatten if needed)
doc_vectors = eval(meta['program_vectors']) if isinstance(meta['program_vectors'], str) else meta['program_vectors']
if isinstance(doc_vectors, (list, np.ndarray)) and len(doc_vectors) == 6:
program_vector = doc_vectors # Single flat vector
else:
program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
except:
program_vector = [0] * 6 # Fallback for malformed vectors
# Use the semantic embedding for similarity
semantic_vector = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
similarity = cosine_similarity([query_vector], [semantic_vector])[0][0] if semantic_vector and query_vector else 0
matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity, 'description': meta.get('description_tokens', ''), 'program_vectors': meta.get('program_vectors', '[]')})
logger.info(f"Queried {len(matching_programs)} programs from ChromaDB")
return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)
except Exception as e:
logger.error(f"Error querying programs from ChromaDB: {e}")
raise
def create_vector(category, level, location, total_lines, parent_path):
"""Helper to create a vector for query (matches parser's create_vector)."""
category_map = {
'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
}
category_id = category_map.get(category, 0)
start_line, end_line = location
span = (end_line - start_line + 1) / total_lines
center_pos = ((start_line + end_line) / 2) / total_lines
parent_depth = len(parent_path)
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1))
for i, parent in enumerate(parent_path)) / max(1, len(category_map))
return [category_id, level, center_pos, span, parent_depth, parent_weight]
def is_subsequence(subseq, seq):
"""Check if subseq is a subsequence of seq."""
it = iter(seq)
return all(item in it for item in subseq)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return tokens
def generate_semantic_vector(description, total_lines=100, use_gpu=False):
"""Generate a 6D semantic vector for a textual description using CodeBERT, projecting to 6D."""
global tokenizer, model, device
if tokenizer is None or model is None:
tokenizer, model, device = load_codebert_model(use_gpu)
# Tokenize and encode the description
inputs = tokenizer(description, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate embeddings
with torch.no_grad():
outputs = model(**inputs)
# Use mean pooling of the last hidden states
vector = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().tolist()
# Truncate or project to 6D (simplified projection: take first 6 dimensions)
if len(vector) < 6:
vector.extend([0] * (6 - len(vector)))
elif len(vector) > 6:
vector = vector[:6] # Truncate to 6D
# Ensure vector isn’t all zeros or defaults
if all(v == 0 for v in vector):
logger.warning(f"Default vector detected for description: {description}")
# Fallback: Use heuristic if CodeBERT fails to generate meaningful embeddings
category_map = {
'import': 1, 'function': 2, 'assign': 17, 'input': 18, 'return': 19, 'if': 5, 'try': 8, 'except': 14
}
tokens = description.lower().split()
vector = [0] * 6
for token in tokens:
for cat, cat_id in category_map.items():
if cat in token:
vector[0] = cat_id # category_id
vector[1] = 1 # level
vector[2] = 0.5 # center_pos
vector[3] = 0.1 # span
vector[4] = 1 # parent_depth
vector[5] = cat_id / len(category_map) # parent_weight
break
logger.debug(f"Generated semantic vector for '{description}': {vector}")
return vector
def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
"""Save ChromaDB data to Hugging Face Dataset, with error handling."""
try:
client = init_chromadb()
collection = client.get_collection(DB_NAME)
# Fetch all data from ChromaDB
results = collection.get(include=["documents", "metadatas", "embeddings"])
data = {
"code": results["documents"],
"sequence": [meta["sequence"] for meta in results["metadatas"]],
"vectors": results["embeddings"], # Semantic 6D vectors
"description_tokens": [meta.get('description_tokens', '') for meta in results["metadatas"]],
"program_vectors": [eval(meta.get('program_vectors', '[]')) for meta in results["metadatas"]] # Store structural vectors
}
# Create a Hugging Face Dataset
dataset = Dataset.from_dict(data)
# Push to Hugging Face Hub
dataset.push_to_hub(dataset_name, token=token)
logger.info(f"Dataset pushed to Hugging Face Hub as {dataset_name}")
except Exception as e:
logger.error(f"Error pushing dataset to Hugging Face Hub: {e}")
raise
def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=os.getenv("HF_KEY")):
"""Load ChromaDB data from Hugging Face Dataset, handle empty dataset, with error handling."""
try:
dataset = load_dataset(dataset_name, split="train", token=token)
client = init_chromadb()
collection = create_collection(client)
for item in dataset:
store_program(client, item["code"], item["sequence"].split(','), item["program_vectors"])
logger.info(f"Loaded {len(dataset)} entries from Hugging Face Hub into ChromaDB")
return client
except Exception as e:
logger.error(f"Error loading dataset from Hugging Face: {e}")
# Fallback: Create empty collection
client = init_chromadb()
create_collection(client)
return client
if __name__ == '__main__':
client = load_chromadb_from_hf()
logger.info("Database initialized or loaded from Hugging Face Hub") |