File size: 6,788 Bytes
2017cb6
dda378f
2017cb6
dda378f
64b5eaa
 
dda378f
64b5eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
64b5eaa
 
dda378f
 
 
 
 
2017cb6
64b5eaa
 
dda378f
 
64b5eaa
 
 
dda378f
 
 
 
 
 
64b5eaa
dda378f
 
 
 
64b5eaa
2017cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda378f
 
64b5eaa
 
dda378f
 
 
64b5eaa
dda378f
 
 
 
 
 
 
 
 
 
 
 
 
64b5eaa
 
 
 
 
 
 
dda378f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017cb6
64b5eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017cb6
dda378f
64b5eaa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# database.py
import chromadb
from parser import parse_python_code
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# User-configurable variables
DB_NAME = "python_programs"  # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors"  # Hugging Face Dataset name
HF_TOKEN = "YOUR_HUGGINGFACE_TOKEN"  # Replace with your Hugging Face API token
PERSIST_DIR = "./chroma_data"  # Directory for persistent storage (optional)

def init_chromadb(persist_dir=PERSIST_DIR):
    """Initialize ChromaDB client, optionally with persistent storage."""
    try:
        # Use persistent storage if directory exists, otherwise in-memory
        if os.path.exists(persist_dir):
            client = chromadb.PersistentClient(path=persist_dir)
        else:
            client = chromadb.Client()
        return client
    except Exception as e:
        print(f"Error initializing ChromaDB: {e}")
        return chromadb.Client()  # Fallback to in-memory

def create_collection(client, collection_name=DB_NAME):
    """Create or get a ChromaDB collection for Python programs."""
    try:
        collection = client.get_collection(name=collection_name)
    except:
        collection = client.create_collection(name=collection_name)
    return collection

def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
    """Store a program in ChromaDB with its code, sequence, and vectors."""
    collection = create_collection(client, collection_name)
    
    # Flatten vectors to ensure they are a list of numbers
    flattened_vectors = [item for sublist in vectors for item in sublist]
    
    # Store program data (ID, code, sequence, vectors)
    program_id = str(hash(code))  # Use hash of code as ID for uniqueness
    collection.add(
        documents=[code],
        metadatas=[{"sequence": ",".join(sequence)}],
        ids=[program_id],
        embeddings=[flattened_vectors]  # Pass as flat list
    )
    return program_id

def populate_sample_db(client):
    """Populate ChromaDB with sample Python programs."""
    samples = [
        """
        import os
        def add_one(x):
            y = x + 1
            return y
        """,
        """
        def multiply(a, b):
            c = a * b
            if c > 0:
                return c
        """
    ]
    
    for code in samples:
        parts, sequence = parse_python_code(code)
        vectors = [part['vector'] for part in parts]
        store_program(client, code, sequence, vectors)

def query_programs(client, operations, collection_name=DB_NAME, top_k=5):
    """Query ChromaDB for programs matching the operations sequence."""
    collection = create_collection(client, collection_name)
    
    # Convert operations to a query vector (average of operation vectors)
    query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
    
    # Perform similarity search
    results = collection.query(
        query_embeddings=[query_vector],
        n_results=top_k,
        include=["documents", "metadatas"]
    )
    
    # Process results
    matching_programs = []
    for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
        sequence = meta['sequence'].split(',')
        if is_subsequence(operations, sequence):
            # Extract and flatten vectors from the document (assuming stored as string or list)
            try:
                doc_vectors = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
                program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
            except:
                program_vector = [0] * 6  # Fallback for malformed vectors
            similarity = cosine_similarity([query_vector], [program_vector])[0][0] if program_vector and query_vector else 0
            matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity})
    
    return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)

def create_vector(category, level, location, total_lines, parent_path):
    """Helper to create a vector for query (matches parser's create_vector)."""
    category_map = {
        'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
        'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
        'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
        'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
    }
    category_id = category_map.get(category, 0)
    start_line, end_line = location
    span = (end_line - start_line + 1) / total_lines
    center_pos = ((start_line + end_line) / 2) / total_lines
    parent_depth = len(parent_path)
    parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1)) 
                        for i, parent in enumerate(parent_path)) / max(1, len(category_map))
    return [category_id, level, center_pos, span, parent_depth, parent_weight]

def is_subsequence(subseq, seq):
    """Check if subseq is a subsequence of seq."""
    it = iter(seq)
    return all(item in it for item in subseq)

def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
    """Save ChromaDB data to Hugging Face Dataset."""
    from datasets import Dataset
    client = init_chromadb()
    collection = create_collection(client)
    
    # Fetch all data from ChromaDB
    results = collection.get(include=["documents", "metadatas", "embeddings"])
    data = {
        "code": results["documents"],
        "sequence": [meta["sequence"] for meta in results["metadatas"]],
        "vectors": [[item for sublist in vec for item in sublist] for vec in results["embeddings"]]  # Flatten vectors
    }
    
    # Create a Hugging Face Dataset
    dataset = Dataset.from_dict(data)
    
    # Push to Hugging Face Hub
    dataset.push_to_hub(dataset_name, token=token)
    print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")

def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
    """Load ChromaDB data from Hugging Face Dataset."""
    from datasets import load_dataset
    client = init_chromadb()
    collection = create_collection(client)
    
    dataset = load_dataset(dataset_name, split="train", token=token)
    for item in dataset:
        collection.add(
            documents=[item["code"]],
            metadatas=[{"sequence": item["sequence"]}],
            ids=[str(hash(item["code"]))],
            embeddings=[item["vectors"]]
        )
    return client

if __name__ == '__main__':
    client = init_chromadb()
    populate_sample_db(client)
    # Uncomment to save to Hugging Face
    # save_chromadb_to_hf()