Spaces:
Running
Running
File size: 6,788 Bytes
2017cb6 dda378f 2017cb6 dda378f 64b5eaa dda378f 64b5eaa dda378f 64b5eaa dda378f 2017cb6 64b5eaa dda378f 64b5eaa dda378f 64b5eaa dda378f 64b5eaa 2017cb6 dda378f 64b5eaa dda378f 64b5eaa dda378f 64b5eaa dda378f 2017cb6 64b5eaa 2017cb6 dda378f 64b5eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# database.py
import chromadb
from parser import parse_python_code
import os
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# User-configurable variables
DB_NAME = "python_programs" # ChromaDB collection name
HF_DATASET_NAME = "python_program_vectors" # Hugging Face Dataset name
HF_TOKEN = "YOUR_HUGGINGFACE_TOKEN" # Replace with your Hugging Face API token
PERSIST_DIR = "./chroma_data" # Directory for persistent storage (optional)
def init_chromadb(persist_dir=PERSIST_DIR):
"""Initialize ChromaDB client, optionally with persistent storage."""
try:
# Use persistent storage if directory exists, otherwise in-memory
if os.path.exists(persist_dir):
client = chromadb.PersistentClient(path=persist_dir)
else:
client = chromadb.Client()
return client
except Exception as e:
print(f"Error initializing ChromaDB: {e}")
return chromadb.Client() # Fallback to in-memory
def create_collection(client, collection_name=DB_NAME):
"""Create or get a ChromaDB collection for Python programs."""
try:
collection = client.get_collection(name=collection_name)
except:
collection = client.create_collection(name=collection_name)
return collection
def store_program(client, code, sequence, vectors, collection_name=DB_NAME):
"""Store a program in ChromaDB with its code, sequence, and vectors."""
collection = create_collection(client, collection_name)
# Flatten vectors to ensure they are a list of numbers
flattened_vectors = [item for sublist in vectors for item in sublist]
# Store program data (ID, code, sequence, vectors)
program_id = str(hash(code)) # Use hash of code as ID for uniqueness
collection.add(
documents=[code],
metadatas=[{"sequence": ",".join(sequence)}],
ids=[program_id],
embeddings=[flattened_vectors] # Pass as flat list
)
return program_id
def populate_sample_db(client):
"""Populate ChromaDB with sample Python programs."""
samples = [
"""
import os
def add_one(x):
y = x + 1
return y
""",
"""
def multiply(a, b):
c = a * b
if c > 0:
return c
"""
]
for code in samples:
parts, sequence = parse_python_code(code)
vectors = [part['vector'] for part in parts]
store_program(client, code, sequence, vectors)
def query_programs(client, operations, collection_name=DB_NAME, top_k=5):
"""Query ChromaDB for programs matching the operations sequence."""
collection = create_collection(client, collection_name)
# Convert operations to a query vector (average of operation vectors)
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0] * 6
# Perform similarity search
results = collection.query(
query_embeddings=[query_vector],
n_results=top_k,
include=["documents", "metadatas"]
)
# Process results
matching_programs = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
sequence = meta['sequence'].split(',')
if is_subsequence(operations, sequence):
# Extract and flatten vectors from the document (assuming stored as string or list)
try:
doc_vectors = eval(doc['vectors']) if isinstance(doc['vectors'], str) else doc['vectors']
program_vector = np.mean([v for v in doc_vectors if isinstance(v, (list, np.ndarray))], axis=0).tolist()
except:
program_vector = [0] * 6 # Fallback for malformed vectors
similarity = cosine_similarity([query_vector], [program_vector])[0][0] if program_vector and query_vector else 0
matching_programs.append({'id': meta['id'], 'code': doc, 'similarity': similarity})
return sorted(matching_programs, key=lambda x: x['similarity'], reverse=True)
def create_vector(category, level, location, total_lines, parent_path):
"""Helper to create a vector for query (matches parser's create_vector)."""
category_map = {
'import': 1, 'function': 2, 'async_function': 3, 'class': 4,
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10,
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16,
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19
}
category_id = category_map.get(category, 0)
start_line, end_line = location
span = (end_line - start_line + 1) / total_lines
center_pos = ((start_line + end_line) / 2) / total_lines
parent_depth = len(parent_path)
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1))
for i, parent in enumerate(parent_path)) / max(1, len(category_map))
return [category_id, level, center_pos, span, parent_depth, parent_weight]
def is_subsequence(subseq, seq):
"""Check if subseq is a subsequence of seq."""
it = iter(seq)
return all(item in it for item in subseq)
def save_chromadb_to_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
"""Save ChromaDB data to Hugging Face Dataset."""
from datasets import Dataset
client = init_chromadb()
collection = create_collection(client)
# Fetch all data from ChromaDB
results = collection.get(include=["documents", "metadatas", "embeddings"])
data = {
"code": results["documents"],
"sequence": [meta["sequence"] for meta in results["metadatas"]],
"vectors": [[item for sublist in vec for item in sublist] for vec in results["embeddings"]] # Flatten vectors
}
# Create a Hugging Face Dataset
dataset = Dataset.from_dict(data)
# Push to Hugging Face Hub
dataset.push_to_hub(dataset_name, token=token)
print(f"Dataset pushed to Hugging Face Hub as {dataset_name}")
def load_chromadb_from_hf(dataset_name=HF_DATASET_NAME, token=HF_TOKEN):
"""Load ChromaDB data from Hugging Face Dataset."""
from datasets import load_dataset
client = init_chromadb()
collection = create_collection(client)
dataset = load_dataset(dataset_name, split="train", token=token)
for item in dataset:
collection.add(
documents=[item["code"]],
metadatas=[{"sequence": item["sequence"]}],
ids=[str(hash(item["code"]))],
embeddings=[item["vectors"]]
)
return client
if __name__ == '__main__':
client = init_chromadb()
populate_sample_db(client)
# Uncomment to save to Hugging Face
# save_chromadb_to_hf() |