Spaces:
Running
Running
File size: 6,110 Bytes
470905d 08ea95c 575baac 107a11e 08ea95c e0a08b7 c26f5f4 107a11e 5859778 7c98d00 5859778 107a11e 575baac 7c98d00 470905d 575baac 470905d 575baac c26f5f4 575baac 7c98d00 470905d a2d4670 c26f5f4 575baac 7c98d00 575baac 470905d a2d4670 c26f5f4 470905d e0a08b7 470905d c26f5f4 470905d e0a08b7 575baac e08abc4 5859778 7c98d00 470905d 7c98d00 470905d 575baac 470905d c26f5f4 470905d 107a11e 08ea95c e0a08b7 08ea95c e0a08b7 107a11e c26f5f4 e92f37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# app.py
from flask import Flask, request, render_template, jsonify, send_file
from parser import parse_python_code
import os
import json
import io
from database import init_chromadb, populate_sample_db, store_program, query_programs, load_chromadb_from_hf, HF_DATASET_NAME, HF_TOKEN, DB_NAME
# User-configurable variables
UPLOAD_DIR = "./uploads" # Directory for uploads
app = Flask(__name__)
def reconstruct_code(parts):
"""Reconstruct the original code from parsed parts."""
sorted_parts = sorted(parts, key=lambda p: p['location'][0])
return ''.join(part['source'] for part in sorted_parts)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
parts = None
filename = 'unnamed.py'
code_input = None
query_results = None
# Handle file upload or pasted code (parsing)
if 'file' in request.files and request.files['file'].filename:
file = request.files['file']
if not file.filename.endswith('.py'):
return 'Invalid file type. Please upload a Python file.', 400
filename = file.filename
file_path = os.path.join(UPLOAD_DIR, filename)
file.save(file_path)
with open(file_path, 'r') as f:
code_input = f.read()
parts, sequence = parse_python_code(code_input)
# Store in ChromaDB
client = init_chromadb()
vectors = [part['vector'] for part in parts]
store_program(client, code_input, sequence, vectors, DB_NAME)
elif 'code' in request.form and request.form['code'].strip():
code_input = request.form['code']
filename = request.form.get('filename', 'unnamed.py') or 'unnamed.py'
if not filename.endswith('.py'):
filename += '.py'
parts, sequence = parse_python_code(code_input)
vectors = [part['vector'] for part in parts]
client = init_chromadb()
store_program(client, code_input, sequence, vectors, DB_NAME)
elif 'query_ops' in request.form and request.form['query_ops'].strip():
# Handle query for operations (category sequence)
operations = [op.strip() for op in request.form['query_ops'].split(',')]
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face
query_results = query_programs(client, operations, DB_NAME)
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
elif 'semantic_query' in request.form and request.form['semantic_query'].strip():
# Handle semantic query (natural language description)
semantic_query = request.form['semantic_query']
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face
query_results = query_programs(client, None, DB_NAME, semantic_query=semantic_query)
return render_template(
'results_partial.html',
parts=None,
filename=filename,
reconstructed_code=None,
code_input=None,
query_results=query_results
)
if parts:
indexed_parts = [{'index': i + 1, **part} for i, part in enumerate(parts)]
reconstructed_code = reconstruct_code(indexed_parts)
return render_template(
'results_partial.html',
parts=indexed_parts,
filename=filename,
reconstructed_code=reconstructed_code,
code_input=code_input,
query_results=None
)
return 'No file, code, or query provided', 400
# Initial page load
client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face on startup
# If no dataset exists locally, populate with samples
try:
if not client.list_collections()[0].name == DB_NAME:
populate_sample_db(client)
except:
populate_sample_db(client)
return render_template('index.html', parts=None, filename=None, reconstructed_code=None, code_input=None, query_results=None)
@app.route('/export_json', methods=['POST'])
def export_json():
parts = request.json.get('parts', [])
export_data = [{'vector': part['vector'], 'source': part['source'], 'description': generate_description_tokens([part['category']], [part['vector']])}
for part in parts]
json_str = json.dumps(export_data, indent=2)
buffer = io.BytesIO(json_str.encode('utf-8'))
buffer.seek(0)
return send_file(
buffer,
as_attachment=True,
download_name='code_vectors.json',
mimetype='application/json'
)
def generate_description_tokens(sequence, vectors):
"""Generate semantic description tokens for a program based on its sequence and vectors."""
tokens = []
category_descriptions = {
'import': 'imports module',
'function': 'defines function',
'assigned_variable': 'assigns variable',
'input_variable': 'input parameter',
'returned_variable': 'returns value',
'if': 'conditional statement',
'return': 'returns result',
'try': 'try block',
'except': 'exception handler',
'expression': 'expression statement',
'spacer': 'empty line or comment'
}
for cat, vec in zip(sequence, vectors):
if cat in category_descriptions:
tokens.append(f"{category_descriptions[cat]}:{cat}")
# Add vector-derived features (e.g., level, span) as tokens
tokens.append(f"level:{vec[1]}")
tokens.append(f"span:{vec[3]:.2f}")
return " ".join(tokens)
if __name__ == '__main__':
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR)
app.run(host="0.0.0.0", port=7860) |