Spaces:
Running
Running
# app.py | |
from flask import Flask, request, render_template, jsonify, send_file | |
from parser import parse_python_code | |
import os | |
import json | |
import io | |
import sqlite3 | |
from database import init_db, populate_sample_db | |
app = Flask(__name__) | |
def reconstruct_code(parts): | |
"""Reconstruct the original code from parsed parts.""" | |
sorted_parts = sorted(parts, key=lambda p: p['location'][0]) | |
return ''.join(part['source'] for part in sorted_parts) | |
def is_subsequence(subseq, seq): | |
"""Check if subseq is a subsequence of seq.""" | |
it = iter(seq) | |
return all(item in it for item in subseq) | |
def query_programs(operations): | |
"""Query the database for programs matching the operations sequence.""" | |
conn = sqlite3.connect('python_programs.db') | |
c = conn.cursor() | |
c.execute("SELECT id, code, sequence, vectors FROM programs") | |
results = [] | |
for row in c.fetchall(): | |
program_id, code, sequence_str, vectors_str = row | |
sequence = sequence_str.split(',') | |
vectors = eval(vectors_str) # Convert string back to list (use JSON in production) | |
if is_subsequence(operations, sequence): | |
# Compute similarity (simple average vector for now) | |
program_vector = sum(vectors, []) / len(vectors) if vectors else [0, 0, 0, 0, 0, 0] | |
query_vector = sum([create_vector(op, 0, (1, 1), 100, []) for op in operations], []) / len(operations) if operations else [0, 0, 0, 0, 0, 0] | |
similarity = cosine_similarity([program_vector], [query_vector])[0][0] if program_vector and query_vector else 0 | |
results.append({'id': program_id, 'code': code, 'similarity': similarity}) | |
conn.close() | |
return sorted(results, key=lambda x: x['similarity'], reverse=True)[:5] # Top 5 matches | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
def create_vector(category, level, location, total_lines, parent_path): | |
"""Helper to create a vector for query (matches parser's create_vector).""" | |
category_map = { | |
'import': 1, 'function': 2, 'async_function': 3, 'class': 4, | |
'if': 5, 'while': 6, 'for': 7, 'try': 8, 'expression': 9, 'spacer': 10, | |
'other': 11, 'elif': 12, 'else': 13, 'except': 14, 'finally': 15, 'return': 16, | |
'assigned_variable': 17, 'input_variable': 18, 'returned_variable': 19 | |
} | |
category_id = category_map.get(category, 0) | |
start_line, end_line = location | |
span = (end_line - start_line + 1) / total_lines | |
center_pos = ((start_line + end_line) / 2) / total_lines | |
parent_depth = len(parent_path) | |
parent_weight = sum(category_map.get(parent.split('[')[0].lower(), 0) * (1 / (i + 1)) | |
for i, parent in enumerate(parent_path)) / max(1, len(category_map)) | |
return [category_id, level, center_pos, span, parent_depth, parent_weight] | |
def index(): | |
if request.method == 'POST': | |
parts = None | |
filename = 'unnamed.py' | |
code_input = None | |
query_results = None | |
# Handle file upload or pasted code (parsing) | |
if 'file' in request.files and request.files['file'].filename: | |
file = request.files['file'] | |
if not file.filename.endswith('.py'): | |
return 'Invalid file type. Please upload a Python file.', 400 | |
filename = file.filename | |
file_path = os.path.join('uploads', filename) | |
file.save(file_path) | |
with open(file_path, 'r') as f: | |
code_input = f.read() | |
parts, sequence = parse_python_code(code_input) | |
# Store in database (for new files) | |
vectors = [part['vector'] for part in parts] | |
from database import store_program | |
store_program(code_input, sequence, vectors) | |
elif 'code' in request.form and request.form['code'].strip(): | |
code_input = request.form['code'] | |
filename = request.form.get('filename', 'unnamed.py') or 'unnamed.py' | |
if not filename.endswith('.py'): | |
filename += '.py' | |
parts, sequence = parse_python_code(code_input) | |
vectors = [part['vector'] for part in parts] | |
from database import store_program | |
store_program(code_input, sequence, vectors) | |
elif 'query_ops' in request.form and request.form['query_ops'].strip(): | |
# Handle query for operations | |
operations = [op.strip() for op in request.form['query_ops'].split(',')] | |
query_results = query_programs(operations) | |
return render_template( | |
'results_partial.html', | |
parts=None, | |
filename=filename, | |
reconstructed_code=None, | |
code_input=None, | |
query_results=query_results | |
) | |
if parts: | |
indexed_parts = [{'index': i + 1, **part} for i, part in enumerate(parts)] | |
reconstructed_code = reconstruct_code(indexed_parts) | |
return render_template( | |
'results_partial.html', | |
parts=indexed_parts, | |
filename=filename, | |
reconstructed_code=reconstructed_code, | |
code_input=code_input, | |
query_results=None | |
) | |
return 'No file, code, or query provided', 400 | |
# Initial page load | |
init_db() # Ensure database is initialized | |
populate_sample_db() # Populate with sample data | |
return render_template('index.html', parts=None, filename=None, reconstructed_code=None, code_input=None, query_results=None) | |
def export_json(): | |
parts = request.json.get('parts', []) | |
export_data = [{'vector': part['vector'], 'source': part['source']} for part in parts] | |
json_str = json.dumps(export_data, indent=2) | |
buffer = io.BytesIO(json_str.encode('utf-8')) | |
buffer.seek(0) | |
return send_file( | |
buffer, | |
as_attachment=True, | |
download_name='code_vectors.json', | |
mimetype='application/json' | |
) | |
if __name__ == '__main__': | |
if not os.path.exists('uploads'): | |
os.makedirs('uploads') | |
app.run(port=7860) |