# save_to_hf.py from datasets import Dataset import chromadb from database import init_chromadb, create_collection def save_chromadb_to_hf(dataset_name="python_program_vectors"): client = init_chromadb() collection = create_collection(client) # Fetch all data from ChromaDB results = collection.get(include=["documents", "metadatas", "embeddings"]) data = { "code": results["documents"], "sequence": [meta["sequence"] for meta in results["metadatas"]], "vectors": results["embeddings"] } # Create a Hugging Face Dataset dataset = Dataset.from_dict(data) # Push to Hugging Face Hub dataset.push_to_hub(dataset_name, token="YOUR_HUGGINGFACE_TOKEN") print(f"Dataset pushed to Hugging Face Hub as {dataset_name}") if __name__ == "__main__": save_chromadb_to_hf()