# app.py from flask import Flask, request, render_template, jsonify, send_file from parser import parse_python_code import os import json import io from database import init_chromadb, populate_sample_db, store_program, query_programs, load_chromadb_from_hf, HF_DATASET_NAME, HF_TOKEN, DB_NAME # User-configurable variables UPLOAD_DIR = "./uploads" # Directory for uploads app = Flask(__name__) def reconstruct_code(parts): """Reconstruct the original code from parsed parts.""" sorted_parts = sorted(parts, key=lambda p: p['location'][0]) return ''.join(part['source'] for part in sorted_parts) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': parts = None filename = 'unnamed.py' code_input = None query_results = None # Handle file upload or pasted code (parsing) if 'file' in request.files and request.files['file'].filename: file = request.files['file'] if not file.filename.endswith('.py'): return 'Invalid file type. Please upload a Python file.', 400 filename = file.filename file_path = os.path.join(UPLOAD_DIR, filename) file.save(file_path) with open(file_path, 'r') as f: code_input = f.read() parts, sequence = parse_python_code(code_input) # Store in ChromaDB client = init_chromadb() vectors = [part['vector'] for part in parts] store_program(client, code_input, sequence, vectors, DB_NAME) elif 'code' in request.form and request.form['code'].strip(): code_input = request.form['code'] filename = request.form.get('filename', 'unnamed.py') or 'unnamed.py' if not filename.endswith('.py'): filename += '.py' parts, sequence = parse_python_code(code_input) vectors = [part['vector'] for part in parts] client = init_chromadb() store_program(client, code_input, sequence, vectors, DB_NAME) elif 'query_ops' in request.form and request.form['query_ops'].strip(): # Handle query for operations (category sequence) operations = [op.strip() for op in request.form['query_ops'].split(',')] client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face query_results = query_programs(client, operations, DB_NAME) return render_template( 'results_partial.html', parts=None, filename=filename, reconstructed_code=None, code_input=None, query_results=query_results ) elif 'semantic_query' in request.form and request.form['semantic_query'].strip(): # Handle semantic query (natural language description) semantic_query = request.form['semantic_query'] client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face query_results = query_programs(client, None, DB_NAME, semantic_query=semantic_query) return render_template( 'results_partial.html', parts=None, filename=filename, reconstructed_code=None, code_input=None, query_results=query_results ) if parts: indexed_parts = [{'index': i + 1, **part} for i, part in enumerate(parts)] reconstructed_code = reconstruct_code(indexed_parts) return render_template( 'results_partial.html', parts=indexed_parts, filename=filename, reconstructed_code=reconstructed_code, code_input=code_input, query_results=None ) return 'No file, code, or query provided', 400 # Initial page load client = load_chromadb_from_hf(HF_DATASET_NAME, HF_TOKEN) # Load from Hugging Face on startup # If no dataset exists locally, populate with samples try: if not client.list_collections()[0].name == DB_NAME: populate_sample_db(client) except: populate_sample_db(client) return render_template('index.html', parts=None, filename=None, reconstructed_code=None, code_input=None, query_results=None) @app.route('/export_json', methods=['POST']) def export_json(): parts = request.json.get('parts', []) export_data = [{'vector': part['vector'], 'source': part['source'], 'description': generate_description_tokens([part['category']], [part['vector']])} for part in parts] json_str = json.dumps(export_data, indent=2) buffer = io.BytesIO(json_str.encode('utf-8')) buffer.seek(0) return send_file( buffer, as_attachment=True, download_name='code_vectors.json', mimetype='application/json' ) def generate_description_tokens(sequence, vectors): """Generate semantic description tokens for a program based on its sequence and vectors.""" tokens = [] category_descriptions = { 'import': 'imports module', 'function': 'defines function', 'assigned_variable': 'assigns variable', 'input_variable': 'input parameter', 'returned_variable': 'returns value', 'if': 'conditional statement', 'return': 'returns result', 'try': 'try block', 'except': 'exception handler', 'expression': 'expression statement', 'spacer': 'empty line or comment' } for cat, vec in zip(sequence, vectors): if cat in category_descriptions: tokens.append(f"{category_descriptions[cat]}:{cat}") # Add vector-derived features (e.g., level, span) as tokens tokens.append(f"level:{vec[1]}") tokens.append(f"span:{vec[3]:.2f}") return " ".join(tokens) if __name__ == '__main__': if not os.path.exists(UPLOAD_DIR): os.makedirs(UPLOAD_DIR) app.run(host="0.0.0.0", port=7860)