Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from transformers import BertTokenizer, BertModel
|
7 |
+
from sklearn.manifold import TSNE
|
8 |
+
import seaborn as sns
|
9 |
+
from captum.attr import IntegratedGradients
|
10 |
+
import io
|
11 |
+
import base64
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Initialize BERT model and tokenizer
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
16 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
# Alternative MLP model (uncomment to use instead of BERT)
|
20 |
+
"""
|
21 |
+
# import torch.nn as nn
|
22 |
+
# class SimpleMLP(nn.Module):
|
23 |
+
# def __init__(self, input_size=10, hidden_sizes=[64, 32], output_size=2):
|
24 |
+
# super(SimpleMLP, self).__init__()
|
25 |
+
# layers = []
|
26 |
+
# prev_size = input_size
|
27 |
+
# for hidden_size in hidden_sizes:
|
28 |
+
# layers.append(nn.Linear(prev_size, hidden_size))
|
29 |
+
# layers.append(nn.ReLU())
|
30 |
+
# prev_size = hidden_size
|
31 |
+
# layers.append(nn.Linear(prev_size, output_size))
|
32 |
+
# self.network = nn.Sequential(*layers)
|
33 |
+
# def forward(self, x):
|
34 |
+
# return self.network(x)
|
35 |
+
# model = SimpleMLP()
|
36 |
+
# model.eval()
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Store intermediate activations
|
40 |
+
activations = {}
|
41 |
+
def hook_fn(module, input, output, name):
|
42 |
+
activations[name] = output
|
43 |
+
|
44 |
+
# Register hooks for BERT layers (or MLP layers)
|
45 |
+
for name, layer in model.named_modules():
|
46 |
+
if 'layer' in name or 'embeddings' in name: # Focus on transformer layers
|
47 |
+
layer.register_forward_hook(lambda m, i, o, n=name: hook_fn(m, i, o, n))
|
48 |
+
# For MLP, replace with:
|
49 |
+
# if isinstance(layer, nn.Linear) or isinstance(layer, nn.ReLU):
|
50 |
+
# layer.register_forward_hook(lambda m, i, o, n=name: hook_fn(m, i, o, n))
|
51 |
+
|
52 |
+
def process_input(input_text, layer_name, visualize_option, attribution_target=0):
|
53 |
+
"""
|
54 |
+
Process input text, compute embeddings, activations, and visualizations.
|
55 |
+
Parameters:
|
56 |
+
- input_text: User-provided text input
|
57 |
+
- layer_name: Selected layer for visualization
|
58 |
+
- visualize_option: 'Embeddings', 'Attention', or 'Activations'
|
59 |
+
- attribution_target: Target class for attribution (0 or 1 for binary classification)
|
60 |
+
Returns:
|
61 |
+
- Dictionary with plots and dataframes
|
62 |
+
"""
|
63 |
+
global activations
|
64 |
+
activations = {} # Reset activations
|
65 |
+
|
66 |
+
# Tokenize input
|
67 |
+
inputs = tokenizer(input_text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
68 |
+
input_ids = inputs['input_ids']
|
69 |
+
attention_mask = inputs['attention_mask']
|
70 |
+
|
71 |
+
# Forward pass
|
72 |
+
with torch.no_grad():
|
73 |
+
outputs = model(input_ids, attention_mask=attention_mask, output_attentions=True, output_hidden_states=True)
|
74 |
+
embeddings = outputs.last_hidden_state # [batch, seq_len, hidden_size]
|
75 |
+
attentions = outputs.attentions # List of attention weights
|
76 |
+
hidden_states = outputs.hidden_states # List of hidden states
|
77 |
+
|
78 |
+
# Convert token IDs to tokens
|
79 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
80 |
+
|
81 |
+
# Initialize output dictionary
|
82 |
+
results = {
|
83 |
+
"plots": [],
|
84 |
+
"dataframes": [],
|
85 |
+
"text": []
|
86 |
+
}
|
87 |
+
|
88 |
+
# Visualization: Embeddings (t-SNE)
|
89 |
+
if visualize_option == "Embeddings":
|
90 |
+
emb = embeddings[0].detach().numpy() # [seq_len, hidden_size]
|
91 |
+
if emb.shape[0] > 1: # Need at least 2 points for t-SNE
|
92 |
+
tsne = TSNE(n_components=2, random_state=42, perplexity=min(5, emb.shape[0]-1))
|
93 |
+
reduced = tsne.fit_transform(emb)
|
94 |
+
fig, ax = plt.subplots()
|
95 |
+
scatter = ax.scatter(reduced[:, 0], reduced[:, 1], c='blue')
|
96 |
+
for i, token in enumerate(tokens):
|
97 |
+
ax.annotate(token, (reduced[i, 0], reduced[i, 1]))
|
98 |
+
ax.set_title("t-SNE of Token Embeddings")
|
99 |
+
# Convert plot to base64 for Gradio
|
100 |
+
buf = io.BytesIO()
|
101 |
+
plt.savefig(buf, format='png')
|
102 |
+
buf.seek(0)
|
103 |
+
img = Image.open(buf)
|
104 |
+
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
105 |
+
results["plots"].append(f"data:image/png;base64,{img_base64}")
|
106 |
+
plt.close()
|
107 |
+
|
108 |
+
# Visualization: Attention Weights
|
109 |
+
if visualize_option == "Attention":
|
110 |
+
if attentions:
|
111 |
+
attn = attentions[-1][0, 0].detach().numpy() # Last layer, first head
|
112 |
+
fig, ax = plt.subplots()
|
113 |
+
sns.heatmap(attn, xticklabels=tokens, yticklabels=tokens, cmap='viridis', ax=ax)
|
114 |
+
ax.set_title("Attention Weights (Last Layer, Head 0)")
|
115 |
+
plt.xticks(rotation=45)
|
116 |
+
plt.yticks(rotation=0)
|
117 |
+
# Convert plot to base64
|
118 |
+
buf = io.BytesIO()
|
119 |
+
plt.savefig(buf, format='png')
|
120 |
+
buf.seek(0)
|
121 |
+
img = Image.open(buf)
|
122 |
+
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
123 |
+
results["plots"].append(f"data:image/png;base64,{img_base64}")
|
124 |
+
plt.close()
|
125 |
+
|
126 |
+
# Visualization: Activations
|
127 |
+
if visualize_option == "Activations":
|
128 |
+
if layer_name in activations:
|
129 |
+
act = activations[layer_name]
|
130 |
+
if isinstance(act, tuple): # Handle attention outputs
|
131 |
+
act = act[0]
|
132 |
+
act = act[0].detach().numpy() # [seq_len, hidden_size]
|
133 |
+
df = pd.DataFrame(act, index=tokens)
|
134 |
+
results["dataframes"].append(df)
|
135 |
+
# Plot mean activation per token
|
136 |
+
fig, ax = plt.subplots()
|
137 |
+
mean_act = np.mean(act, axis=1)
|
138 |
+
ax.bar(range(len(mean_act)), mean_act)
|
139 |
+
ax.set_xticks(range(len(mean_act)))
|
140 |
+
ax.set_xticklabels(tokens, rotation=45)
|
141 |
+
ax.set_title(f"Mean Activations in {layer_name}")
|
142 |
+
# Convert plot to base64
|
143 |
+
buf = io.BytesIO()
|
144 |
+
plt.savefig(buf, format='png')
|
145 |
+
buf.seek(0)
|
146 |
+
img = Image.open(buf)
|
147 |
+
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
148 |
+
results["plots"].append(f"data:image/png;base64,{img_base64}")
|
149 |
+
plt.close()
|
150 |
+
|
151 |
+
# Attribution: Integrated Gradients
|
152 |
+
def forward_func(inputs, attention_mask=None):
|
153 |
+
outputs = model(inputs, attention_mask=attention_mask)
|
154 |
+
return outputs.pooler_output[:, attribution_target]
|
155 |
+
|
156 |
+
ig = IntegratedGradients(forward_func)
|
157 |
+
attributions, delta = ig.attribute(
|
158 |
+
inputs=input_ids,
|
159 |
+
additional_forward_args=(attention_mask,),
|
160 |
+
target=attribution_target,
|
161 |
+
return_convergence_delta=True
|
162 |
+
)
|
163 |
+
attr = attributions[0].detach().numpy()
|
164 |
+
attr_df = pd.DataFrame({"Token": tokens, "Attribution": attr.sum(axis=1)})
|
165 |
+
results["dataframes"].append(attr_df)
|
166 |
+
|
167 |
+
# Plot attributions
|
168 |
+
fig, ax = plt.subplots()
|
169 |
+
ax.bar(range(len(attr_df)), attr_df["Attribution"])
|
170 |
+
ax.set_xticks(range(len(attr_df)))
|
171 |
+
ax.set_xticklabels(tokens, rotation=45)
|
172 |
+
ax.set_title("Integrated Gradients Attribution")
|
173 |
+
buf = io.BytesIO()
|
174 |
+
plt.savefig(buf, format='png')
|
175 |
+
buf.seek(0)
|
176 |
+
img = Image.open(buf)
|
177 |
+
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
178 |
+
results["plots"].append(f"data:image/png;base64,{img_base64}")
|
179 |
+
plt.close()
|
180 |
+
|
181 |
+
return (
|
182 |
+
results["plots"] if results["plots"] else None,
|
183 |
+
results["dataframes"] if results["dataframes"] else None,
|
184 |
+
"\n".join(results["text"]) if results["text"] else "Processing complete."
|
185 |
+
)
|
186 |
+
|
187 |
+
# Gradio Interface
|
188 |
+
def create_gradio_interface():
|
189 |
+
with gr.Blocks(title="Neural Network Visualization Demo") as demo:
|
190 |
+
gr.Markdown("# Neural Network Visualization Demo")
|
191 |
+
gr.Markdown("Analyze the paths of a BERT model from input to output. Enter text, select a layer, and choose a visualization option.")
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column():
|
195 |
+
input_text = gr.Textbox(label="Input Text", value="The quick brown fox jumps over the lazy dog.")
|
196 |
+
layer_name = gr.Dropdown(
|
197 |
+
label="Select Layer",
|
198 |
+
choices=[name for name in model.named_modules() if 'layer' in name or 'embeddings' in name],
|
199 |
+
value="embeddings"
|
200 |
+
)
|
201 |
+
visualize_option = gr.Radio(
|
202 |
+
label="Visualization Type",
|
203 |
+
choices=["Embeddings", "Attention", "Activations"],
|
204 |
+
value="Embeddings"
|
205 |
+
)
|
206 |
+
attribution_target = gr.Slider(
|
207 |
+
label="Attribution Target Class (0 or 1 for binary classification)",
|
208 |
+
minimum=0,
|
209 |
+
maximum=1,
|
210 |
+
step=1,
|
211 |
+
value=0
|
212 |
+
)
|
213 |
+
submit_btn = gr.Button("Analyze")
|
214 |
+
|
215 |
+
with gr.Column():
|
216 |
+
plot_output = gr.Gallery(label="Visualizations")
|
217 |
+
dataframe_output = gr.Dataframe(label="Data Outputs")
|
218 |
+
text_output = gr.Textbox(label="Messages")
|
219 |
+
|
220 |
+
submit_btn.click(
|
221 |
+
fn=process_input,
|
222 |
+
inputs=[input_text, layer_name, visualize_option, attribution_target],
|
223 |
+
outputs=[plot_output, dataframe_output, text_output]
|
224 |
+
)
|
225 |
+
|
226 |
+
return demo
|
227 |
+
|
228 |
+
# Launch the demo
|
229 |
+
if __name__ == "__main__":
|
230 |
+
demo = create_gradio_interface()
|
231 |
+
demo.launch()
|