Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,8 @@ import matplotlib.pyplot as plt
|
|
6 |
from transformers import BertTokenizer, BertModel
|
7 |
from sklearn.manifold import TSNE
|
8 |
import seaborn as sns
|
9 |
-
from captum.attr import IntegratedGradients
|
10 |
import io
|
11 |
import base64
|
12 |
-
from PIL import Image
|
13 |
import logging
|
14 |
|
15 |
# Set up logging
|
@@ -35,13 +33,16 @@ for name, layer in model.named_modules():
|
|
35 |
if 'layer' in name or 'embeddings' in name:
|
36 |
layer.register_forward_hook(lambda m, i, o, n=name: hook_fn(m, i, o, n))
|
37 |
|
38 |
-
def process_input(input_text,
|
39 |
"""
|
40 |
-
Process input text
|
|
|
|
|
|
|
41 |
Returns:
|
42 |
-
-
|
43 |
-
-
|
44 |
-
- Status message
|
45 |
"""
|
46 |
global activations
|
47 |
activations = {} # Reset activations
|
@@ -49,7 +50,7 @@ def process_input(input_text, layer_name, visualize_option, attribution_target=0
|
|
49 |
try:
|
50 |
# Validate input
|
51 |
if not input_text.strip():
|
52 |
-
return
|
53 |
|
54 |
# Tokenize input
|
55 |
inputs = tokenizer(input_text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
@@ -66,141 +67,96 @@ def process_input(input_text, layer_name, visualize_option, attribution_target=0
|
|
66 |
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
67 |
|
68 |
# Initialize outputs
|
69 |
-
|
70 |
-
|
71 |
|
72 |
# Visualization: Embeddings (t-SNE)
|
73 |
if visualize_option == "Embeddings":
|
74 |
-
emb = embeddings[0].detach().numpy()
|
75 |
if emb.shape[0] > 1:
|
76 |
try:
|
77 |
tsne = TSNE(n_components=2, random_state=42, perplexity=min(5, emb.shape[0]-1))
|
78 |
reduced = tsne.fit_transform(emb)
|
79 |
-
fig, ax = plt.subplots()
|
80 |
ax.scatter(reduced[:, 0], reduced[:, 1], c='blue')
|
81 |
for i, token in enumerate(tokens):
|
82 |
ax.annotate(token, (reduced[i, 0], reduced[i, 1]))
|
83 |
ax.set_title("t-SNE of Token Embeddings")
|
84 |
buf = io.BytesIO()
|
85 |
-
plt.savefig(buf, format='png')
|
86 |
buf.seek(0)
|
87 |
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
88 |
-
|
89 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
logger.warning(f"t-SNE failed: {e}")
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
# Visualization: Attention Weights
|
95 |
-
|
96 |
if attentions:
|
97 |
-
attn = attentions[-1][0, 0].detach().numpy()
|
98 |
-
fig, ax = plt.subplots()
|
99 |
sns.heatmap(attn, xticklabels=tokens, yticklabels=tokens, cmap='viridis', ax=ax)
|
100 |
ax.set_title("Attention Weights (Last Layer, Head 0)")
|
101 |
plt.xticks(rotation=45)
|
102 |
plt.yticks(rotation=0)
|
103 |
buf = io.BytesIO()
|
104 |
-
plt.savefig(buf, format='png')
|
105 |
buf.seek(0)
|
106 |
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
107 |
-
|
108 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
if visualize_option == "Activations" and layer_name in activations:
|
112 |
-
act = activations[layer_name]
|
113 |
-
if isinstance(act, tuple):
|
114 |
-
act = act[0]
|
115 |
-
act = act[0].detach().numpy()
|
116 |
-
df = pd.DataFrame(act, index=tokens)
|
117 |
-
dataframes.append(df.to_dict()) # Convert to dict for serialization
|
118 |
-
fig, ax = plt.subplots()
|
119 |
-
mean_act = np.mean(act, axis=1)
|
120 |
-
ax.bar(range(len(mean_act)), mean_act)
|
121 |
-
ax.set_xticks(range(len(mean_act)))
|
122 |
-
ax.set_xticklabels(tokens, rotation=45)
|
123 |
-
ax.set_title(f"Mean Activations in {layer_name}")
|
124 |
-
buf = io.BytesIO()
|
125 |
-
plt.savefig(buf, format='png')
|
126 |
-
buf.seek(0)
|
127 |
-
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
128 |
-
plots.append(f"data:image/png;base64,{img_base64}")
|
129 |
-
plt.close()
|
130 |
-
|
131 |
-
# Attribution: Integrated Gradients
|
132 |
-
def forward_func(inputs, attention_mask=None):
|
133 |
-
outputs = model(inputs, attention_mask=attention_mask)
|
134 |
-
return outputs.pooler_output[:, int(attribution_target)]
|
135 |
-
|
136 |
-
ig = IntegratedGradients(forward_func)
|
137 |
-
try:
|
138 |
-
attributions, _ = ig.attribute(
|
139 |
-
inputs=input_ids,
|
140 |
-
additional_forward_args=(attention_mask,),
|
141 |
-
target=int(attribution_target),
|
142 |
-
return_convergence_delta=True
|
143 |
-
)
|
144 |
-
attr = attributions[0].detach().numpy().sum(axis=1)
|
145 |
-
attr_df = pd.DataFrame({"Token": tokens, "Attribution": attr})
|
146 |
-
dataframes.append(attr_df.to_dict())
|
147 |
-
fig, ax = plt.subplots()
|
148 |
-
ax.bar(range(len(attr)), attr)
|
149 |
-
ax.set_xticks(range(len(attr)))
|
150 |
-
ax.set_xticklabels(tokens, rotation=45)
|
151 |
-
ax.set_title("Integrated Gradients Attribution")
|
152 |
-
buf = io.BytesIO()
|
153 |
-
plt.savefig(buf, format='png')
|
154 |
-
buf.seek(0)
|
155 |
-
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
156 |
-
plots.append(f"data:image/png;base64,{img_base64}")
|
157 |
-
plt.close()
|
158 |
-
except Exception as e:
|
159 |
-
logger.warning(f"Integrated Gradients failed: {e}")
|
160 |
-
dataframes.append({"Error": ["Attribution could not be computed."]})
|
161 |
-
|
162 |
-
return plots, dataframes, "Processing complete."
|
163 |
|
164 |
except Exception as e:
|
165 |
logger.error(f"Processing failed: {e}")
|
166 |
-
return
|
167 |
|
168 |
# Gradio Interface
|
169 |
def create_gradio_interface():
|
170 |
with gr.Blocks(title="Neural Network Visualization Demo") as demo:
|
171 |
gr.Markdown("# Neural Network Visualization Demo")
|
172 |
-
gr.Markdown("
|
173 |
|
174 |
with gr.Row():
|
175 |
with gr.Column():
|
176 |
-
input_text = gr.Textbox(
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
value="embeddings"
|
181 |
)
|
182 |
visualize_option = gr.Radio(
|
183 |
label="Visualization Type",
|
184 |
-
choices=["Embeddings", "Attention"
|
185 |
value="Embeddings"
|
186 |
)
|
187 |
-
attribution_target = gr.Slider(
|
188 |
-
label="Attribution Target Class (0 or 1)",
|
189 |
-
minimum=0,
|
190 |
-
maximum=1,
|
191 |
-
step=1,
|
192 |
-
value=0
|
193 |
-
)
|
194 |
submit_btn = gr.Button("Analyze")
|
195 |
|
196 |
with gr.Column():
|
197 |
-
plot_output = gr.
|
198 |
-
dataframe_output = gr.Dataframe(label="Data
|
199 |
text_output = gr.Textbox(label="Messages")
|
200 |
|
201 |
submit_btn.click(
|
202 |
fn=process_input,
|
203 |
-
inputs=[input_text,
|
204 |
outputs=[plot_output, dataframe_output, text_output]
|
205 |
)
|
206 |
|
@@ -213,4 +169,4 @@ if __name__ == "__main__":
|
|
213 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
214 |
except Exception as e:
|
215 |
logger.error(f"Failed to launch Gradio demo: {e}")
|
216 |
-
print(f"Error launching demo: {e}. Try running locally without share=True.")
|
|
|
6 |
from transformers import BertTokenizer, BertModel
|
7 |
from sklearn.manifold import TSNE
|
8 |
import seaborn as sns
|
|
|
9 |
import io
|
10 |
import base64
|
|
|
11 |
import logging
|
12 |
|
13 |
# Set up logging
|
|
|
33 |
if 'layer' in name or 'embeddings' in name:
|
34 |
layer.register_forward_hook(lambda m, i, o, n=name: hook_fn(m, i, o, n))
|
35 |
|
36 |
+
def process_input(input_text, visualize_option):
|
37 |
"""
|
38 |
+
Process input text and generate visualizations for BERT embeddings or attention.
|
39 |
+
Parameters:
|
40 |
+
- input_text: User-provided text
|
41 |
+
- visualize_option: 'Embeddings' or 'Attention'
|
42 |
Returns:
|
43 |
+
- Base64-encoded plot image (str)
|
44 |
+
- Dataframe dictionary (dict)
|
45 |
+
- Status message (str)
|
46 |
"""
|
47 |
global activations
|
48 |
activations = {} # Reset activations
|
|
|
50 |
try:
|
51 |
# Validate input
|
52 |
if not input_text.strip():
|
53 |
+
return None, {"Error": ["Input text cannot be empty."]}, "Error: Input text cannot be empty."
|
54 |
|
55 |
# Tokenize input
|
56 |
inputs = tokenizer(input_text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
|
|
67 |
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
68 |
|
69 |
# Initialize outputs
|
70 |
+
plot_data = None
|
71 |
+
dataframe = None
|
72 |
|
73 |
# Visualization: Embeddings (t-SNE)
|
74 |
if visualize_option == "Embeddings":
|
75 |
+
emb = embeddings[0].detach().numpy() # [seq_len, hidden_size]
|
76 |
if emb.shape[0] > 1:
|
77 |
try:
|
78 |
tsne = TSNE(n_components=2, random_state=42, perplexity=min(5, emb.shape[0]-1))
|
79 |
reduced = tsne.fit_transform(emb)
|
80 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
81 |
ax.scatter(reduced[:, 0], reduced[:, 1], c='blue')
|
82 |
for i, token in enumerate(tokens):
|
83 |
ax.annotate(token, (reduced[i, 0], reduced[i, 1]))
|
84 |
ax.set_title("t-SNE of Token Embeddings")
|
85 |
buf = io.BytesIO()
|
86 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
87 |
buf.seek(0)
|
88 |
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
89 |
+
plot_data = f"data:image/png;base64,{img_base64}"
|
90 |
plt.close()
|
91 |
+
# Dataframe for coordinates
|
92 |
+
dataframe = pd.DataFrame({
|
93 |
+
"Token": tokens,
|
94 |
+
"t-SNE X": reduced[:, 0],
|
95 |
+
"t-SNE Y": reduced[:, 1]
|
96 |
+
}).to_dict()
|
97 |
except Exception as e:
|
98 |
logger.warning(f"t-SNE failed: {e}")
|
99 |
+
dataframe = {"Error": [str(e)]}
|
100 |
+
return None, dataframe, f"Error: t-SNE computation failed: {e}"
|
101 |
+
else:
|
102 |
+
dataframe = {"Error": ["Too few tokens for t-SNE."]}
|
103 |
+
return None, dataframe, "Error: Too few tokens for t-SNE."
|
104 |
|
105 |
# Visualization: Attention Weights
|
106 |
+
elif visualize_option == "Attention":
|
107 |
if attentions:
|
108 |
+
attn = attentions[-1][0, 0].detach().numpy() # Last layer, first head
|
109 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
110 |
sns.heatmap(attn, xticklabels=tokens, yticklabels=tokens, cmap='viridis', ax=ax)
|
111 |
ax.set_title("Attention Weights (Last Layer, Head 0)")
|
112 |
plt.xticks(rotation=45)
|
113 |
plt.yticks(rotation=0)
|
114 |
buf = io.BytesIO()
|
115 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
116 |
buf.seek(0)
|
117 |
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
118 |
+
plot_data = f"data:image/png;base64,{img_base64}"
|
119 |
plt.close()
|
120 |
+
# Dataframe for attention weights
|
121 |
+
dataframe = pd.DataFrame(attn, index=tokens, columns=tokens).to_dict()
|
122 |
+
else:
|
123 |
+
dataframe = {"Error": ["No attention weights available."]}
|
124 |
+
return None, dataframe, "Error: No attention weights available."
|
125 |
|
126 |
+
return plot_data, dataframe, "Processing complete."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
except Exception as e:
|
129 |
logger.error(f"Processing failed: {e}")
|
130 |
+
return None, {"Error": [str(e)]}, f"Error: {e}"
|
131 |
|
132 |
# Gradio Interface
|
133 |
def create_gradio_interface():
|
134 |
with gr.Blocks(title="Neural Network Visualization Demo") as demo:
|
135 |
gr.Markdown("# Neural Network Visualization Demo")
|
136 |
+
gr.Markdown("Visualize BERT embeddings or attention weights. Enter text and select a visualization type.")
|
137 |
|
138 |
with gr.Row():
|
139 |
with gr.Column():
|
140 |
+
input_text = gr.Textbox(
|
141 |
+
label="Input Text",
|
142 |
+
value="The quick brown fox jumps over the lazy dog.",
|
143 |
+
placeholder="Enter text here..."
|
|
|
144 |
)
|
145 |
visualize_option = gr.Radio(
|
146 |
label="Visualization Type",
|
147 |
+
choices=["Embeddings", "Attention"],
|
148 |
value="Embeddings"
|
149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
submit_btn = gr.Button("Analyze")
|
151 |
|
152 |
with gr.Column():
|
153 |
+
plot_output = gr.Image(label="Visualization", type="pil")
|
154 |
+
dataframe_output = gr.Dataframe(label="Data Output")
|
155 |
text_output = gr.Textbox(label="Messages")
|
156 |
|
157 |
submit_btn.click(
|
158 |
fn=process_input,
|
159 |
+
inputs=[input_text, visualize_option],
|
160 |
outputs=[plot_output, dataframe_output, text_output]
|
161 |
)
|
162 |
|
|
|
169 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
170 |
except Exception as e:
|
171 |
logger.error(f"Failed to launch Gradio demo: {e}")
|
172 |
+
print(f"Error launching demo: {e}. Try running locally with a different port or without share=True.")
|