File size: 4,023 Bytes
9c9ed59
 
05e56df
b62cff3
9c9ed59
 
 
8055050
9c9ed59
 
 
 
 
 
 
0dbf789
 
 
f16d00a
0dbf789
9c9ed59
daa6574
9c9ed59
05e56df
62cde7b
0740cc4
f20de8c
d5e2616
f20de8c
d5e2616
f16d00a
 
d816c58
9c9ed59
 
 
 
 
 
 
 
 
 
 
62cde7b
9c9ed59
 
ca677a9
9c9ed59
 
 
 
 
 
 
0dbf789
9c9ed59
 
9cc5276
 
 
 
 
 
ca677a9
0dbf789
ca677a9
 
 
9c9ed59
 
 
 
 
 
 
 
 
4f3177e
9c9ed59
 
9bae30a
9c9ed59
4f3177e
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0b562
9cc5276
7d0b562
f791e50
7d0b562
1afe06d
 
 
 
 
 
 
9c9ed59
fc05708
 
 
 
 
 
 
 
 
8055050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from huggingface_hub import InferenceClient
import gradio as gr
import random
import prompts
client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    seed = random.randint(1,1111111111111111)

    agent=prompts.WEB_DEV
    if agent_name == "WEB_DEV":
        agent = prompts.WEB_DEV
    if agent_name == "AI_SYSTEM_PROMPT":
        agent = prompts.AI_SYSTEM_PROMPT
    if agent_name == "PYTHON_CODE_DEV":
        agent = prompts.PYTHON_CODE_DEV        
    system_prompt=agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),


]

examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
          ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
          ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
          ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
          ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]


gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    additional_inputs=additional_inputs,
    title="Mixtral 46.7B",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)