brogelio commited on
Commit
9723499
·
1 Parent(s): 8d5b7a9

Added original air_draw file

Browse files
Files changed (1) hide show
  1. Air_Draw_RGB.py +0 -161
Air_Draw_RGB.py DELETED
@@ -1,161 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- from PIL import Image
4
- import mediapipe as mp
5
- import time
6
- import gradio as gr
7
-
8
- DOMINANT_HAND = "Right"
9
-
10
- width, height = 1280, 720
11
- width_, height_, = 256, 144
12
-
13
-
14
- def find_hands(brain, img):
15
- img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # opencv image is in BGR form but mp is trained with RGB
16
- results = brain.process(img_rgb) # process finds the hands and outputs classification and 21 landmarks for each hand
17
- all_hands = [] # initializing array to hold the dictionary for the hands
18
- h, w, _ = img.shape # get height and width of image for scaling
19
- if results.multi_hand_landmarks:
20
- for hand_type, hand_lms in zip(results.multi_handedness, results.multi_hand_landmarks): # elegant solution for mp list object traversal
21
- hand = {} # initializing dict for each hand
22
- lm_list = [] # landmarks array for all 21 point of the hand
23
- for lm in hand_lms.landmark:
24
- px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) # scaling landmark points to image size for frame coordinates
25
- lm_list.append([px, py, pz])
26
-
27
- hand["lm_list"] = lm_list # add "lm_list" key for all landmark points of the hand
28
- hand["type"] = hand_type.classification[0].label # adds the label (left/right) for the hand
29
- all_hands.append(hand) # appends the dict
30
- return all_hands
31
-
32
-
33
- def is_drawing(index, thumb): # proximity function with arbitrary threshold
34
- npindex = np.array((index[0], index[1]))
35
- npthumb = np.array((thumb[0], thumb[1]))
36
- if np.linalg.norm(npindex - npthumb) < 30:
37
- return True
38
- else:
39
- return False
40
-
41
-
42
- def save(landmarks): # brute force finger orientation checking
43
- if landmarks[8][1] < landmarks[6][1]:
44
- if landmarks[12][1] < landmarks[10][1]:
45
- if landmarks[16][1] < landmarks[14][1]:
46
- if landmarks[20][1] < landmarks[18][1]:
47
- return True
48
- else:
49
- return False
50
-
51
- def clear(landmarks): # brute force finger orientation checking
52
- if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]:
53
- return True
54
- else:
55
- return False
56
-
57
- drawing_flag = False
58
- sleepy_time = time.time()
59
-
60
- if __name__ == '__main__':
61
- cam = cv2.VideoCapture(0)
62
- cam.set(3, width)
63
- cam.set(4, height)
64
-
65
- detector = mp.solutions.hands.Hands(min_detection_confidence=0.8) # initialize mp model
66
- # paper = np.zeros((width, height, 4), np.uint8)
67
- paper = np.zeros((height, width, 3), dtype=np.uint8) # create blank page
68
- paper.fill(255)
69
-
70
- past_holder = () # coordinates holder
71
- palette = cv2.imread('palette.jpg')
72
-
73
- output_frames = []
74
- page_num = 0
75
- # runny = 1
76
- color = (0, 0, 0)
77
- while True:
78
- # runny -= 1
79
- x, rgb_image = cam.read()
80
- rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1)
81
-
82
- hands = find_hands(detector, rgb_image_f)
83
-
84
- try:
85
- if hands:
86
- hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1]
87
- lm_list1 = hand1["lm_list"] # List of 21 Landmarks
88
- handedness = hand1["type"]
89
-
90
- if handedness == DOMINANT_HAND:
91
- idx_coords = lm_list1[8][0], lm_list1[8][1] # 0 is width (bigger)
92
- # print(idx_coords)
93
- cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
94
-
95
- if idx_coords[1] < 72: # brute force but should be extremely marginally faster lol
96
- if idx_coords[0] < 142: # red
97
- color = (0, 0, 255)
98
- if 142 < idx_coords[0] < 285: # orange
99
- color = (0, 115, 255)
100
- if 285 < idx_coords[0] < 426: # yellow
101
- color = (0, 229, 255)
102
- if 426 < idx_coords[0] < 569: # green
103
- color = (0, 195, 88)
104
- if 569 < idx_coords[0] < 711: # blue
105
- color = (195, 85, 0)
106
- if 711 < idx_coords[0] < 853: # indigo
107
- color = (195, 0, 68)
108
- if 853 < idx_coords[0] < 996: # violet
109
- color = (195, 0, 143)
110
- if 996 < idx_coords[0] < 1137: # black
111
- color = (0, 0, 0)
112
- if 1137 < idx_coords[0]: # white / eraser
113
- color = (255, 255, 255)
114
-
115
- if len(past_holder) and drawing_flag: # start drawing
116
- cv2.line(paper, past_holder, idx_coords, color, 5)
117
- cv2.line(rgb_image_f, past_holder, idx_coords, color, 5)
118
- # paper[idx_coords[0]][idx_coords[1]][0] = 255
119
- # paper[idx_coords[0]][idx_coords[1]][3] = 255
120
- cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)
121
-
122
- if save(lm_list1) and time.time() - sleepy_time > 3: # save page, 3 secs arbitrary, just to not iterate every loop iteration
123
- paper[0:height_, w - width_: w] = 255
124
- paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB)
125
- im = Image.fromarray(paper)
126
- im.save("paper%s.png" % page_num)
127
- print("saved")
128
- sleepy_time = time.time()
129
- paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR)
130
- page_num += 1
131
-
132
- if clear(lm_list1) and time.time() - sleepy_time > 3: # clear page
133
- paper = np.zeros((height, width, 3), dtype=np.uint8)
134
- paper.fill(255)
135
- print("page cleared")
136
- sleepy_time = time.time()
137
-
138
- past_holder = idx_coords
139
-
140
- if is_drawing(idx_coords, lm_list1[4]): # 4 is thumb for intuitive "hold pen" to draw
141
- drawing_flag = True
142
- else:
143
- drawing_flag = False
144
-
145
- except:
146
- pass
147
-
148
- finally:
149
- rgb_image_f[0:72, ] = palette
150
- presenter = cv2.resize(rgb_image_f, (width_, height_))
151
- h, w, _ = rgb_image_f.shape
152
- paper[0:height_, w - width_: w] = presenter
153
- cv2.imshow("Image", rgb_image_f)
154
- cv2.imshow("paper", paper)
155
- key = cv2.waitKey(1)
156
- if key & 0xFF == ord('q') or key == 27: # Press esc or 'q' to close the image window
157
- break
158
- output_frames.append(paper)
159
-
160
-
161
- print("output: ", type(output_frames))