fffiloni's picture
Upload folder using huggingface_hub
0305a63 verified
raw
history blame
34.7 kB
# Modified from minSDXL by Simo Ryu:
# https://github.com/cloneofsimo/minSDXL ,
# which is in turn modified from the original code of:
# https://github.com/huggingface/diffusers
# So has APACHE 2.0 license
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import inspect
from collections import namedtuple
from torch.fft import fftn, fftshift, ifftn, ifftshift
from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0
# Implementation of FreeU for minsdxl
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).
This version of the method comes from here:
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
"""
x = x_in
B, C, H, W = x.shape
# Non-power of 2 images must be float32
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
x = x.to(dtype=torch.float32)
# FFT
x_freq = fftn(x, dim=(-2, -1))
x_freq = fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W // 2
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = ifftshift(x_freq, dim=(-2, -1))
x_filtered = ifftn(x_freq, dim=(-2, -1)).real
return x_filtered.to(dtype=x_in.dtype)
def apply_freeu(
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs):
"""Applies the FreeU mechanism as introduced in https:
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.
Args:
resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
hidden_states (`torch.Tensor`): Inputs to the underlying block.
res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if resolution_idx == 0:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
if resolution_idx == 1:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])
return hidden_states, res_hidden_states
# Diffusers-style LoRA to keep everything in the min_sdxl.py file
class LoRALinearLayer(nn.Module):
r"""
A linear layer that is used with LoRA.
Parameters:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
rank (`int`, `optional`, defaults to 4):
The rank of the LoRA layer.
network_alpha (`float`, `optional`, defaults to `None`):
The value of the network alpha used for stable learning and preventing underflow. This value has the same
meaning as the `--network_alpha` option in the kohya-ss trainer script. See
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
device (`torch.device`, `optional`, defaults to `None`):
The device to use for the layer's weights.
dtype (`torch.dtype`, `optional`, defaults to `None`):
The dtype to use for the layer's weights.
"""
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
network_alpha: Optional[float] = None,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class LoRACompatibleLinear(nn.Linear):
"""
A Linear layer that can be used with LoRA.
"""
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
super().__init__(*args, **kwargs)
self.lora_layer = lora_layer
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
self.lora_layer = lora_layer
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
if self.lora_layer is None:
return
dtype, device = self.weight.data.dtype, self.weight.data.device
w_orig = self.weight.data.float()
w_up = self.lora_layer.up.weight.data.float()
w_down = self.lora_layer.down.weight.data.float()
if self.lora_layer.network_alpha is not None:
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
if safe_fusing and torch.isnan(fused_weight).any().item():
raise ValueError(
"This LoRA weight seems to be broken. "
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
"LoRA weights will not be fused."
)
self.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self._lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.weight.data
dtype, device = fused_weight.dtype, fused_weight.device
w_up = self.w_up.to(device=device).float()
w_down = self.w_down.to(device).float()
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
if self.lora_layer is None:
out = super().forward(hidden_states)
return out
else:
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
return out
class Timesteps(nn.Module):
def __init__(self, num_channels: int = 320):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(
half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_features, out_features):
super(TimestepEmbedding, self).__init__()
self.linear_1 = nn.Linear(in_features, out_features, bias=True)
self.act = nn.SiLU()
self.linear_2 = nn.Linear(out_features, out_features, bias=True)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class ResnetBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, conv_shortcut=True):
super(ResnetBlock2D, self).__init__()
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.time_emb_proj = nn.Linear(1280, out_channels, bias=True)
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True)
self.dropout = nn.Dropout(p=0.0, inplace=False)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.nonlinearity = nn.SiLU()
self.conv_shortcut = None
if conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1
)
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, None, None]
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
class Attention(nn.Module):
def __init__(
self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True
):
super(Attention, self).__init__()
if num_heads is None:
self.head_dim = 64
self.num_heads = inner_dim // self.head_dim
else:
self.num_heads = num_heads
self.head_dim = inner_dim // num_heads
self.scale = self.head_dim**-0.5
if cross_attention_dim is None:
cross_attention_dim = inner_dim
self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False)
self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList(
[LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)]
)
self.scale_qk = scale_qk
if processor is None:
processor = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
)
self.set_processor(processor)
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
r"""
The forward method of the `Attention` class.
Args:
hidden_states (`torch.Tensor`):
The hidden states of the query.
encoder_hidden_states (`torch.Tensor`, *optional*):
The hidden states of the encoder.
attention_mask (`torch.Tensor`, *optional*):
The attention mask to use. If `None`, no mask is applied.
**cross_attention_kwargs:
Additional keyword arguments to pass along to the cross attention.
Returns:
`torch.Tensor`: The output of the attention layer.
"""
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
print(
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
def orig_forward(self, hidden_states, encoder_hidden_states=None):
q = self.to_q(hidden_states)
k = (
self.to_k(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_k(hidden_states)
)
v = (
self.to_v(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_v(hidden_states)
)
b, t, c = q.size()
q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2)
# scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
# attn_weights = torch.softmax(scores, dim=-1)
# attn_output = torch.matmul(attn_weights, v)
attn_output = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale,
)
attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)
for layer in self.to_out:
attn_output = layer(attn_output)
return attn_output
def set_processor(self, processor) -> None:
r"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
print(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False):
r"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
# serialization format for LoRA Attention Processors. It should be deleted once the integration
# with PEFT is completed.
is_lora_activated = {
name: module.lora_layer is not None
for name, module in self.named_modules()
if hasattr(module, "lora_layer")
}
# 1. if no layer has a LoRA activated we can return the processor as usual
if not any(is_lora_activated.values()):
return self.processor
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
is_lora_activated.pop("add_k_proj", None)
is_lora_activated.pop("add_v_proj", None)
# 2. else it is not possible that only some layers have LoRA activated
if not all(is_lora_activated.values()):
raise ValueError(
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
)
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
non_lora_processor_cls_name = self.processor.__class__.__name__
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
hidden_size = self.inner_dim
# now create a LoRA attention processor from the LoRA layers
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
kwargs = {
"cross_attention_dim": self.cross_attention_dim,
"rank": self.to_q.lora_layer.rank,
"network_alpha": self.to_q.lora_layer.network_alpha,
"q_rank": self.to_q.lora_layer.rank,
"q_hidden_size": self.to_q.lora_layer.out_features,
"k_rank": self.to_k.lora_layer.rank,
"k_hidden_size": self.to_k.lora_layer.out_features,
"v_rank": self.to_v.lora_layer.rank,
"v_hidden_size": self.to_v.lora_layer.out_features,
"out_rank": self.to_out[0].lora_layer.rank,
"out_hidden_size": self.to_out[0].lora_layer.out_features,
}
if hasattr(self.processor, "attention_op"):
kwargs["attention_op"] = self.processor.attention_op
lora_processor = lora_processor_cls(hidden_size, **kwargs)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
lora_processor = lora_processor_cls(
hidden_size,
cross_attention_dim=self.add_k_proj.weight.shape[0],
rank=self.to_q.lora_layer.rank,
network_alpha=self.to_q.lora_layer.network_alpha,
)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
# only save if used
if self.add_k_proj.lora_layer is not None:
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
else:
lora_processor.add_k_proj_lora = None
lora_processor.add_v_proj_lora = None
else:
raise ValueError(f"{lora_processor_cls} does not exist.")
return lora_processor
class GEGLU(nn.Module):
def __init__(self, in_features, out_features):
super(GEGLU, self).__init__()
self.proj = nn.Linear(in_features, out_features * 2, bias=True)
def forward(self, x):
x_proj = self.proj(x)
x1, x2 = x_proj.chunk(2, dim=-1)
return x1 * torch.nn.functional.gelu(x2)
class FeedForward(nn.Module):
def __init__(self, in_features, out_features):
super(FeedForward, self).__init__()
self.net = nn.ModuleList(
[
GEGLU(in_features, out_features * 4),
nn.Dropout(p=0.0, inplace=False),
nn.Linear(out_features * 4, out_features, bias=True),
]
)
def forward(self, x):
for layer in self.net:
x = layer(x)
return x
class BasicTransformerBlock(nn.Module):
def __init__(self, hidden_size):
super(BasicTransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn1 = Attention(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn2 = Attention(hidden_size, 2048)
self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.ff = FeedForward(hidden_size, hidden_size)
def forward(self, x, encoder_hidden_states=None):
residual = x
x = self.norm1(x)
x = self.attn1(x)
x = x + residual
residual = x
x = self.norm2(x)
if encoder_hidden_states is not None:
x = self.attn2(x, encoder_hidden_states)
else:
x = self.attn2(x)
x = x + residual
residual = x
x = self.norm3(x)
x = self.ff(x)
x = x + residual
return x
class Transformer2DModel(nn.Module):
def __init__(self, in_channels, out_channels, n_layers):
super(Transformer2DModel, self).__init__()
self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True)
self.proj_in = nn.Linear(in_channels, out_channels, bias=True)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(out_channels) for _ in range(n_layers)]
)
self.proj_out = nn.Linear(out_channels, out_channels, bias=True)
def forward(self, hidden_states, encoder_hidden_states=None):
batch, _, height, width = hidden_states.shape
res = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states)
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
return hidden_states + res
class Downsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Downsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=2, padding=1
)
def forward(self, x):
return self.conv(x)
class Upsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
return self.conv(x)
class DownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(DownBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels, conv_shortcut=False),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
def forward(self, hidden_states, temb):
output_states = []
for module in self.resnets:
hidden_states = module(hidden_states, temb)
output_states.append(hidden_states)
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnDownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True):
super(CrossAttnDownBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = None
if has_downsamplers:
self.downsamplers = nn.ModuleList(
[Downsample2D(out_channels, out_channels)]
)
def forward(self, hidden_states, temb, encoder_hidden_states):
output_states = []
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
output_states.append(hidden_states)
if self.downsamplers is not None:
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnUpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel, n_layers):
super(CrossAttnUpBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(prev_output_channel + out_channels, out_channels),
ResnetBlock2D(2 * out_channels, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
def forward(
self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class UpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel):
super(UpBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(out_channels + prev_output_channel, out_channels),
ResnetBlock2D(out_channels * 2, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
and getattr(self, "resolution_idx", None)
)
for resnet in self.resnets:
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNetMidBlock2DCrossAttn(nn.Module):
def __init__(self, in_features):
super(UNetMidBlock2DCrossAttn, self).__init__()
self.attentions = nn.ModuleList(
[Transformer2DModel(in_features, in_features, n_layers=10)]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
]
)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNet2DConditionModel(nn.Module):
def __init__(self):
super(UNet2DConditionModel, self).__init__()
# This is needed to imitate huggingface config behavior
# has nothing to do with the model itself
# remove this if you don't use diffuser's pipeline
self.config = namedtuple(
"config", "in_channels addition_time_embed_dim sample_size"
)
self.config.in_channels = 4
self.config.addition_time_embed_dim = 256
self.config.sample_size = 128
self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1)
self.time_proj = Timesteps()
self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280)
self.add_time_proj = Timesteps(256)
self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280)
self.down_blocks = nn.ModuleList(
[
DownBlock2D(in_channels=320, out_channels=320),
CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2),
CrossAttnDownBlock2D(
in_channels=640,
out_channels=1280,
n_layers=10,
has_downsamplers=False,
),
]
)
self.up_blocks = nn.ModuleList(
[
CrossAttnUpBlock2D(
in_channels=640,
out_channels=1280,
prev_output_channel=1280,
n_layers=10,
),
CrossAttnUpBlock2D(
in_channels=320,
out_channels=640,
prev_output_channel=1280,
n_layers=2,
),
UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640),
]
)
self.mid_block = UNetMidBlock2DCrossAttn(1280)
self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1)
def forward(
self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs
):
# Implement the forward pass through the model
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps).to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
text_embeds = added_cond_kwargs.get("text_embeds")
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb
sample = self.conv_in(sample)
# 3. down
s0 = sample
sample, [s1, s2, s3] = self.down_blocks[0](
sample,
temb=emb,
)
sample, [s4, s5, s6] = self.down_blocks[1](
sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
sample, [s7, s8] = self.down_blocks[2](
sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
# 4. mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states
)
# 5. up
sample = self.up_blocks[0](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s6, s7, s8],
encoder_hidden_states=encoder_hidden_states,
)
sample = self.up_blocks[1](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s3, s4, s5],
encoder_hidden_states=encoder_hidden_states,
)
sample = self.up_blocks[2](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s0, s1, s2],
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return [sample]