File size: 20,418 Bytes
62cc7ef
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
7f9e35f
 
62cc7ef
 
 
 
 
 
 
 
 
 
7f9e35f
 
 
 
 
 
 
 
 
 
62cc7ef
7f9e35f
62cc7ef
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
 
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
79c392a
7f9e35f
 
 
 
 
 
08a9a80
7f9e35f
 
 
08a9a80
7f9e35f
62cc7ef
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
 
 
08a9a80
62cc7ef
08a9a80
 
 
 
 
 
 
79c392a
62cc7ef
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
7f9e35f
62cc7ef
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
7f9e35f
 
62cc7ef
7f9e35f
 
 
 
62cc7ef
7f9e35f
 
 
62cc7ef
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
7f9e35f
62cc7ef
7f9e35f
62cc7ef
 
7f9e35f
62cc7ef
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
7f9e35f
62cc7ef
7f9e35f
 
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
 
 
62cc7ef
7f9e35f
62cc7ef
 
 
 
 
 
7f9e35f
62cc7ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e35f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
prod = False
port = 8080
show_options = False
if prod:
    port = 8081
    # show_options = False

import os
import gc
import random
import time
import gradio as gr
import numpy as np
# import imageio
import torch
from PIL import Image
from diffusers import (
    ControlNetModel,
    DPMSolverMultistepScheduler,
    StableDiffusionControlNetPipeline,
    AutoencoderKL,
)
from diffusers.models.attention_processor import AttnProcessor2_0
from preprocess import Preprocessor
MAX_SEED = np.iinfo(np.int32).max
API_KEY = os.environ.get("API_KEY", None)

print("CUDA version:", torch.version.cuda)
print("loading pipe")
compiled = False
# api = HfApi()

import spaces
    
preprocessor = Preprocessor()
preprocessor.load("NormalBae")

if gr.NO_RELOAD:
    torch.cuda.max_memory_allocated(device="cuda")

    # Controlnet Normal
    model_id = "lllyasviel/control_v11p_sd15_normalbae"
    print("initializing controlnet")
    controlnet = ControlNetModel.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        attn_implementation="flash_attention_2",
    ).to("cuda")
    
    # Scheduler
    scheduler = DPMSolverMultistepScheduler.from_pretrained(
        "runwayml/stable-diffusion-v1-5",
        solver_order=2,
        subfolder="scheduler",
        use_karras_sigmas=True,
        final_sigmas_type="sigma_min",
        algorithm_type="sde-dpmsolver++",
        prediction_type="epsilon",
        thresholding=False,
        denoise_final=True,
        device_map="cuda",
        torch_dtype=torch.float16,
    )

    # Stable Diffusion Pipeline URL
    # base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors"
    base_model_url = "https://huggingface.co/Lykon/AbsoluteReality/blob/main/AbsoluteReality_1.8.1_pruned.safetensors"
    vae_url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
    
    vae = AutoencoderKL.from_single_file(vae_url, torch_dtype=torch.float16).to("cuda")
    vae.to(memory_format=torch.channels_last) 
    
    pipe = StableDiffusionControlNetPipeline.from_single_file(
        base_model_url,
        # safety_checker=None,
        # load_safety_checker=True,
        controlnet=controlnet,
        scheduler=scheduler,
        vae=vae,
        torch_dtype=torch.float16,
    )

    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2",)
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress")
    pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari")
    pipe.to("cuda")
    
    # experimental speedup?
    # pipe.compile()
    # torch.cuda.empty_cache()
    # gc.collect()
    print("---------------Loaded controlnet pipeline---------------") 

    @spaces.GPU(duration=12)
    def init(pipe):
        pipe.enable_xformers_memory_efficient_attention()
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        pipe.unet.set_attn_processor(AttnProcessor2_0())
        print("Model Compiled!")
    init(pipe)

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_additional_prompt():
    prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"]
    bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"]
    accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"]
    return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9"
    # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"]

def get_prompt(prompt, additional_prompt):
    interior = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
    default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    default2 = f"professional 3d model {prompt},octane render,highly detailed,volumetric,dramatic lighting,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    randomize = get_additional_prompt()
    # nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed"
    # bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW"
    lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl"
    pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play"
    bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage"
    # ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao"
    ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao"
    athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9"
    atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9"
    maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid"
    nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress"
    naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie"
    abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo"
    # shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari"
    shibari2 = "octane render, highly detailed, volumetric, HDA_Shibari"
    
    if prompt == "":
        girls = [randomize, pet_play, bondage, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari2, ahegao2]
        prompts_nsfw = [abg, shibari2, ahegao2]
        prompt = f"{random.choice(girls)}"
        prompt = f"boho chic"
        # print(f"-------------{preset}-------------")
    else:
        prompt = f"Photo from Pinterest of {prompt} {interior}"
        # prompt = default2
    return f"{prompt} f{additional_prompt}"

style_list = [
    {
        "name": "None",
        "prompt": ""
    },
    {
        "name": "Minimalistic",
        "prompt": "Minimalist interior design, clean lines, neutral colors, uncluttered space, functional furniture, lots of natural light"
    },
    {
        "name": "Boho Chic",
        "prompt": "Bohemian chic interior, eclectic mix of patterns and textures, vintage furniture, plants, woven textiles, warm earthy colors"
    },
    {
        "name": "Saudi Prince Gold",
        "prompt": "Opulent gold interior, luxurious ornate furniture, crystal chandeliers, rich fabrics, marble floors, intricate Arabic patterns"
    },
    {
        "name": "Modern Farmhouse",
        "prompt": "Modern farmhouse interior, rustic wood elements, shiplap walls, neutral color palette, industrial accents, cozy textiles"
    },
    {
        "name": "Neoclassical",
        "prompt": "Neoclassical interior design, elegant columns, ornate moldings, symmetrical layout, refined furniture, muted color palette"
    },
    {
        "name": "Eclectic",
        "prompt": "Eclectic interior design, mix of styles and eras, bold color combinations, diverse furniture pieces, unique art objects"
    },
    {
        "name": "Parisian White",
        "prompt": "Parisian apartment interior, all-white color scheme, ornate moldings, herringbone wood floors, elegant furniture, large windows"
    },
    {
        "name": "Hollywood Glam",
        "prompt": "Hollywood Regency interior, glamorous and luxurious, bold colors, mirrored surfaces, velvet upholstery, gold accents"
    },
    {
        "name": "Scandinavian",
        "prompt": "Scandinavian interior design, light wood tones, white walls, minimalist furniture, cozy textiles, hygge atmosphere"
    },
    {
        "name": "Japanese",
        "prompt": "Traditional Japanese interior, tatami mats, shoji screens, low furniture, zen garden view, minimalist decor, natural materials"
    },
    {
        "name": "Texas Cowboy",
        "prompt": "Western cowboy interior, rustic wood beams, leather furniture, cowhide rugs, antler chandeliers, southwestern patterns"
    },
    {
        "name": "Midcentury Modern",
        "prompt": "Mid-century modern interior, 1950s-60s style furniture, organic shapes, warm wood tones, bold accent colors, large windows"
    },
    {
        "name": "Beach",
        "prompt": "Coastal beach house interior, light blue and white color scheme, weathered wood, nautical accents, sheer curtains, ocean view"
    },
    {
        "name": "Retro Futurism",
        "prompt": "Neon (atompunk world) retro cyberpunk background",
    },
    {
        "name": "The Matrix",
        "prompt": "Futuristic cyberpunk interior, neon accent lighting, holographic plants, sleek black surfaces, advanced gaming setup, transparent screens, Blade Runner inspired decor, high-tech minimalist furniture, subtle Matrix green code effects, ceiling-to-floor digital displays, automated smart home features, hidden LED strips, metallic and glass materials, floating furniture pieces, ambient blue lighting"
    },
]

styles = {k["name"]: (k["prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())

def apply_style(style_name):
    if style_name in styles:
        p = styles.get(style_name, "boho chic")
    return p

    
css = """
h1 {
    text-align: center;
    display:block;
}
h2 {
    text-align: center;
    display:block;
}
h3 {
    text-align: center;
    display:block;
}
.gradio-container{max-width: 1200px !important}
footer {visibility: hidden}
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
    #############################################################################
    with gr.Row():
        with gr.Accordion("Advanced options", open=show_options, visible=show_options):
            num_images = gr.Slider(
                label="Images", minimum=1, maximum=4, value=1, step=1
            )
            image_resolution = gr.Slider(
                label="Image resolution",
                minimum=256,
                maximum=1024,
                value=512,
                step=256,
            )
            preprocess_resolution = gr.Slider(
                label="Preprocess resolution",
                minimum=128,
                maximum=1024,
                value=512,
                step=1,
            )
            num_steps = gr.Slider(
                label="Number of steps", minimum=1, maximum=100, value=15, step=1
            )  # 20/4.5 or 12 without lora, 4 with lora
            guidance_scale = gr.Slider(
                label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1
            )  # 5 without lora, 2 with lora
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            a_prompt = gr.Textbox(
                label="Additional prompt",
                value = "design-style interior designed (interior space), captured with a DSLR camera using f/10 aperture, 1/60 sec shutter speed, ISO 400, 20mm focal length, tungsten white balance, (sharp focus), professional photography, high-resolution, 8k, Pulitzer Prize-winning"
            )
            n_prompt = gr.Textbox(
                label="Negative prompt",
                value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)",
            )
    #############################################################################
    # input text
    with gr.Row():
        gr.Text(label="Interior Design Style Examples", value="Eclectic, Maximalist, Bohemian, Scandinavian, Minimalist, Rustic, Modern Farmhouse, Contemporary, Luxury, Airbnb, Boho Chic, Midcentury Modern, Art Deco, Zen, Beach, Neoclassical, Industrial, Biophilic, Eco-friendly, Hollywood Glam, Parisian White, Saudi Prince Gold, French Country, Monster Energy Drink, Cyberpunk, Vaporwave, Baroque, etc.\n\nPro tip: add a color to customize it! You can also describe the furniture type.")
    with gr.Column():
        prompt = gr.Textbox(
            label="Custom Prompt",
            placeholder="boho chic",
        )
    with gr.Row(visible=True):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value="None",
            label="Design Styles",
        )
    # input image
    with gr.Row():
        with gr.Column():
            image = gr.Image(
                label="Input",
                sources=["upload"],
                show_label=True,
                mirror_webcam=True,
                format="webp",
            )
            # run button
            with gr.Column():
                run_button = gr.Button(value="Use this one", size=["lg"], visible=False)
        # output image
        with gr.Column():
            result = gr.Image(  
                label="Output",
                interactive=False,
                format="webp",
                show_share_button= False,
            )
            # Use this image button
            with gr.Column():
                use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False)
    config = [
        image,
        style_selection,
        prompt,
        a_prompt,
        n_prompt,
        num_images,
        image_resolution,
        preprocess_resolution,
        num_steps,
        guidance_scale,
        seed,
    ]
    
    with gr.Row():
        helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True)
    
    # image processing
    @gr.on(triggers=[image.upload, prompt.submit, run_button.click], inputs=config, outputs=result, show_progress="minimal")
    def auto_process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
    
    # AI Image Processing
    @gr.on(triggers=[use_ai_button.click], inputs=config, outputs=result, show_progress="minimal")
    def submit(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
        return process_image(image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)

    # Change input to result
    @gr.on(triggers=[use_ai_button.click], inputs=None, outputs=image, show_progress="hidden")
    def update_input():
        try:
            print("Updating image to AI Temp Image")
            ai_temp_image = Image.open("temp_image.jpg")
            return ai_temp_image
        except FileNotFoundError:
            print("No AI Image Available")
            return None
        
    # Turn off buttons when processing
    @gr.on(triggers=[image.upload, use_ai_button.click, run_button.click], inputs=None, outputs=[run_button, use_ai_button], show_progress="hidden")
    def turn_buttons_off():
        return gr.update(visible=False), gr.update(visible=False)
    
    # Turn on buttons when processing is complete
    @gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button], show_progress="hidden")
    def turn_buttons_on():
        return gr.update(visible=True), gr.update(visible=True)

@spaces.GPU(duration=10)
@torch.inference_mode()
def process_image(
    image,
    style_selection,
    prompt,
    a_prompt,
    n_prompt,
    num_images,
    image_resolution,
    preprocess_resolution,
    num_steps,
    guidance_scale,
    seed,
    progress=gr.Progress(track_tqdm=True)
):
    torch.cuda.synchronize()
    preprocess_start = time.time()
    print("processing image")
    preprocessor.load("NormalBae")
    # preprocessor.load("Canny") #20 steps, 9 guidance, 512, 512

    global compiled
    if not compiled:
        print("Not Compiled")
        compiled = True
    
    seed = random.randint(0, MAX_SEED)
    generator = torch.cuda.manual_seed(seed)
    control_image = preprocessor(
        image=image,
        image_resolution=image_resolution,
        detect_resolution=preprocess_resolution,
    )
    preprocess_time = time.time() - preprocess_start
    if style_selection is not None or style_selection != "None":
        prompt = "Photo from Pinterest of " + apply_style(style_selection) + " " + prompt + " " + a_prompt
    else:
        prompt=str(get_prompt(prompt, a_prompt))
    negative_prompt=str(n_prompt)
    print(prompt)
    start = time.time()
    results = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images,
        num_inference_steps=num_steps,
        generator=generator,
        image=control_image,
    ).images[0]
    torch.cuda.synchronize()
    torch.cuda.empty_cache()
    print(f"\n-------------------------Preprocess done in: {preprocess_time:.2f} seconds-------------------------")    
    print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
    
    # timestamp = int(time.time())
    #if not os.path.exists("./outputs"):
    #    os.makedirs("./outputs")
    # img_path = f"./{timestamp}.jpg"
    # results_path = f"./{timestamp}_out_{prompt}.jpg"
    # imageio.imsave(img_path, image)
    # results.save(results_path)
    results.save("temp_image.jpg")
    
    # api.upload_file(
    #     path_or_fileobj=img_path,
    #     path_in_repo=img_path,
    #     repo_id="broyang/anime-ai-outputs",
    #     repo_type="dataset",
    #     token=API_KEY,
    #     run_as_future=True,
    # )
    # api.upload_file(
    #     path_or_fileobj=results_path,
    #     path_in_repo=results_path,
    #     repo_id="broyang/anime-ai-outputs",
    #     repo_type="dataset",
    #     token=API_KEY,
    #     run_as_future=True,
    # )

    return results
if prod:
    demo.queue(max_size=20).launch(server_name="localhost", server_port=port)
else:
    demo.queue(api_open=False).launch(show_api=False)