Spaces:
Running
on
Zero
Running
on
Zero
Bobby
commited on
Commit
·
0abe9ec
1
Parent(s):
352cc63
revert
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ from diffusers import (
|
|
19 |
ControlNetModel,
|
20 |
DPMSolverMultistepScheduler,
|
21 |
StableDiffusionControlNetPipeline,
|
22 |
-
AutoencoderKL,
|
23 |
)
|
24 |
from controlnet_aux_local import NormalBaeDetector
|
25 |
|
@@ -371,10 +371,8 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
|
371 |
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
|
372 |
def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
373 |
# First, yield the previous result to update the input image immediately
|
374 |
-
preprocessor.load("NormalBae")
|
375 |
yield previous_result, gr.update()
|
376 |
# Then, process the new input image
|
377 |
-
|
378 |
new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
379 |
# Finally, yield the new result
|
380 |
yield previous_result, new_result
|
@@ -389,7 +387,7 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
|
389 |
def turn_buttons_on():
|
390 |
return gr.update(visible=True), gr.update(visible=True)
|
391 |
|
392 |
-
@spaces.GPU(duration=
|
393 |
@torch.inference_mode()
|
394 |
def process_image(
|
395 |
image,
|
@@ -410,7 +408,7 @@ def process_image(
|
|
410 |
|
411 |
seed = random.randint(0, MAX_SEED)
|
412 |
generator = torch.cuda.manual_seed(seed)
|
413 |
-
|
414 |
control_image = preprocessor(
|
415 |
image=image,
|
416 |
image_resolution=image_resolution,
|
@@ -436,7 +434,7 @@ def process_image(
|
|
436 |
).images[0]
|
437 |
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
438 |
# torch.cuda.synchronize()
|
439 |
-
torch.cuda.empty_cache()
|
440 |
return results
|
441 |
|
442 |
if prod:
|
|
|
19 |
ControlNetModel,
|
20 |
DPMSolverMultistepScheduler,
|
21 |
StableDiffusionControlNetPipeline,
|
22 |
+
# AutoencoderKL,
|
23 |
)
|
24 |
from controlnet_aux_local import NormalBaeDetector
|
25 |
|
|
|
371 |
@gr.on(triggers=[use_ai_button.click], inputs=[result] + config, outputs=[image, result], show_progress="minimal")
|
372 |
def submit(previous_result, image, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
373 |
# First, yield the previous result to update the input image immediately
|
|
|
374 |
yield previous_result, gr.update()
|
375 |
# Then, process the new input image
|
|
|
376 |
new_result = process_image(previous_result, style_selection, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed)
|
377 |
# Finally, yield the new result
|
378 |
yield previous_result, new_result
|
|
|
387 |
def turn_buttons_on():
|
388 |
return gr.update(visible=True), gr.update(visible=True)
|
389 |
|
390 |
+
@spaces.GPU(duration=12)
|
391 |
@torch.inference_mode()
|
392 |
def process_image(
|
393 |
image,
|
|
|
408 |
|
409 |
seed = random.randint(0, MAX_SEED)
|
410 |
generator = torch.cuda.manual_seed(seed)
|
411 |
+
preprocessor.load("NormalBae")
|
412 |
control_image = preprocessor(
|
413 |
image=image,
|
414 |
image_resolution=image_resolution,
|
|
|
434 |
).images[0]
|
435 |
print(f"\n-------------------------Inference done in: {time.time() - start:.2f} seconds-------------------------")
|
436 |
# torch.cuda.synchronize()
|
437 |
+
# torch.cuda.empty_cache()
|
438 |
return results
|
439 |
|
440 |
if prod:
|